
  

 
 
 
 

Report No. 3-31 
 

Developing Risk-based Rankings for Pesticides in 
Support of Standard Development at Environment 

Canada: Predicting Effects of Pesticides in Freshwater 
Aquatic Ecosystems – Using Field Data Validation 

National Agri-Environmental 
Standards Initiative 
(NAESI) 

Technical Series 2007



 

Photos: 
Bottom Left- clockwise 
 
Fraser Valley near Abbotsford, B.C.: Wayne Belzer, Pacific Yukon Region, Environment Canada 
Crop spraying: Corel CD photo # 95C2840 
Elk Creek, BC: Joseph Culp, National Water Research Institute, Environment Canada 
Prairie smoke and bee: Emily Wallace, Prairie Northern Region, Environment Canada 
 
 
This report can be cited as follows: 

Singh, L. 2007. Developing Risk-based Rankings for Pesticides in Support of Standard 
Development at Environment Canada:  Predicting Effects of pesticides in Freshwater 
Aquatic Ecosystems – Using Field Data Validation. National Agri-Environmental 
Standards Initiative Technical Series Report No. 3-31. 207 p. 

 



 

 
 
 
 
 
 

Prepared and published by 
Environment Canada 

Gatineau, QC 
 
 

December 2007 
 
 
 
 
 
 
 
 
 

NATIONAL AGRI-ENVIRONMENTAL STANDARDS INITIATIVE 
TECHNICAL SERIES 

 
 
 
 
 
DEVELOPING RISK-BASED RANKINGS FOR PESTICIDES IN SUPPORT 

OF STANDARD DEVELOPMENT AT ENVIRONMENT CANADA: 
PREDICTING EFFECTS OF PESTICIDES IN FRESHWATER AQUATIC 

ECOSYSTEMS – USING FIELD DATA VALIDATION 
 

REPORT NO. 3-31 
 
 
 
 
 
 
 
© Her majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2007. All 
rights reserved. Reproduction authorized if source is acknowledged. The reproduction must be presented 
within its proper context and must not be used for profit. 



 

NAESI Technical Series No. 3-31 
Page i 

NOTE TO READERS 
The National Agri-Environmental Standards Initiative (NAESI) is a four-year (2004-2008) project 
between Environment Canada (EC) and Agriculture and Agri-Food Canada (AAFC) and is one of many 
initiatives under AAFC’s Agriculture Policy Framework (APF). The goals of the National Agri-
Environmental Standards Initiative include: 

• Establishing non-regulatory national environmental performance standards (with regional 
application) that support common EC and AAFC goals for the environment 

• Evaluating standards attainable by environmentally-beneficial agricultural production and 
management practices; and  

• Increasing understanding of relationships between agriculture and the environment.  

Under NAESI, agri-environmental performance standards (i.e., outcome-based standards) will be 
established that identify both desired levels of environmental condition and levels considered achievable 
based on available technology and practice. These standards will be integrated by AAFC into beneficial 
agricultural management systems and practices to help reduce environmental risks. Additionally, these 
will provide benefits to the health and supply of water, health of soils, health of air and the atmosphere; 
and ensure compatibility between biodiversity and agriculture. Standards are being developed in four 
thematic areas: Air, Biodiversity, Pesticides, and Water. Outcomes from NAESI will contribute to the APF 
goals of improved stewardship by agricultural producers of land, water, air and biodiversity and increased 
Canadian and international confidence that food from the Canadian agriculture and food sector is being 
produced in a safe and environmentally sound manner. 
The development of agri-environmental performance standards involves science-based assessments of 
relative risk and the determination of desired environmental quality. As such, the National Agri-
Environmental Standards Initiative (NAESI) Technical Series is dedicated to the consolidation and 
dissemination of the scientific knowledge, information, and tools produced through this program that will 
be used by Environment Canada as the scientific basis for the development and delivery of environmental 
performance standards. Reports in the Technical Series are available in the language (English or French) 
in which they were originally prepared and represent theme-specific deliverables. As the intention of this 
series is to provide an easily navigable and consolidated means of reporting on NAESI’s yearly activities 
and progress, the detailed findings summarized in this series may, in fact, be published elsewhere, for 
example, as scientific papers in peer-reviewed journals. 
This report provides scientific information to partially fulfill deliverables under the Pesticide Theme of 
NAESI. This report was written by L. Singh of Carleton University. The report was edited and formatted 
by Denise Davy to meet the criteria of the NAESI Technical Series. The information in this document is 
current as of when the document was originally prepared. For additional information regarding this 
publication, please contact: 
 

Environment Canada 
National Agri-Environmental Standards 
Initiative Secretariat 
351 St. Joseph Blvd. 8th floor 

 

Gatineau, QC 
K1A 0H3 
Phone: (819) 997-1029 
Fax: (819) 953-0461 



 

NAESI Technical Series No. 3-31 
Page ii 

NOTE À L’INTENTION DES LECTEURS 
L’Initiative nationale d’élaboration de normes agroenvironnementales (INENA) est un projet de quatre ans 
(2004-2008) mené conjointement par Environnement Canada (EC) et Agriculture et Agroalimentaire 
Canada (AAC) et l’une des nombreuses initiatives qui s’inscrit dans le Cadre stratégique pour l’agriculture 
(CSA) d’AAC. Elle a notamment comme objectifs: 

• d’établir des normes nationales de rendement environnemental non réglementaires 
(applicables dans les régions) qui soutiennent les objectifs communs d’EC et d’AAC en ce qui 
concerne l’environnement; 

• d’évaluer des normes qui sont réalisables par des pratiques de production et de gestion 
agricoles avantageuses pour l’environnement; 

• de faire mieux comprendre les liens entre l’agriculture et l’environnement.  

Dans le cadre de l’INENA, des normes de rendement agroenvironnementales (c.-à-d. des normes axées sur 
les résultats) seront établies pour déterminer les niveaux de qualité environnementale souhaités et les 
niveaux considérés comme réalisables au moyen des meilleures technologies et pratiques disponibles. 
AAC intégrera ces normes dans des systèmes et pratiques de gestion bénéfiques en agriculture afin d’aider 
à réduire les risques pour l’environnement. De plus, elles amélioreront l’approvisionnement en eau et la 
qualité de celle-ci, la qualité des sols et celle de l’air et de l’atmosphère, et assureront la compatibilité 
entre la biodiversité et l’agriculture. Des normes sont en voie d’être élaborées dans quatre domaines 
thématiques: l’air, la biodiversité, les pesticides et l’eau. Les résultats de l’INENA contribueront aux 
objectifs du CSA, soit d’améliorer la gérance des terres, de l’eau, de l’air et de la biodiversité par les 
producteurs agricoles et d’accroître la confiance du Canada et d’autres pays dans le fait que les aliments 
produits par les agriculteurs et le secteur de l’alimentation du Canada le sont d’une manière sécuritaire et 
soucieuse de l’environnement. 
L’élaboration de normes de rendement agroenvironnementales comporte des évaluations scientifiques des 
risques relatifs et la détermination de la qualité environnementale souhaitée. Comme telle, la Série 
technique de l’INENA vise à regrouper et diffuser les connaissances, les informations et les outils 
scientifiques qui sont produits grâce à ce programme et dont Environnement Canada se servira comme 
fondement scientifique afin d’élaborer et de transmettre des normes de rendement environnemental. Les 
rapports compris dans la Série technique sont disponibles dans la langue (français ou anglais) dans 
laquelle ils ont été rédigés au départ et constituent des réalisations attendues propres à un thème en 
particulier. Comme cette série a pour objectif de fournir un moyen intégré et facile à consulter de faire 
rapport sur les activités et les progrès réalisés durant l’année dans le cadre de l’INENA, les conclusions 
détaillées qui sont résumées dans la série peuvent, en fait, être publiées ailleurs comme sous forme 
d’articles scientifiques de journaux soumis à l’évaluation par les pairs. 
Le présent rapport fournit des données scientifiques afin de produire en partie les réalisations attendues 
pour le thème des pesticides dans le cadre de l’INENA. Ce rapport a été rédigé par L. Singh de l'Université 
de Carleton. De plus, il a été révisé et formaté par Denise Davy selon les critères établis pour la Série 
technique de l’INENA. L’information contenue dans ce document était à jour au moment de sa rédaction. 
Pour plus de renseignements sur cette publication, veuillez communiquer avec l’organisme suivant: 

Secrétariat de l’Initiative nationale 
d’élaboration de normes 
agroenvironnementales 
Environnement Canada 

351, boul. St-Joseph, 8eétage 
Gatineau (Québec)  K1A 0H3 
Téléphone: (819) 997-1029 
Télécopieur: (819) 953-0461 
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ABSTRACT 

The plausibility of using single-species acute laboratory toxicity data to predict the effects of 

pesticide contamination of freshwater aquatic ecosystems was investigated, using single 

application studies. Toxicity units were developed using the geometric mean Daphnia spp. values 

or hazard concentrations for 5% of species derived from species sensitivity distributions for 

crustacea, insecta or algae, and peak pesticide water concentration. Pesticide physico-chemical 

(Kow, Koc) and fate (hydrolysis, water photolysis, aerobic aquatic biotransformation and aerobic 

soil biotransformation half-lives) properties were used along with the toxicity units and structural 

properties of the experimental systems (volume, surface area to volume ratio) to produce models 

capable of explaining the effects seen in the experiments. Akaike’s Information Criterion was 

used to select the best model combinations, which were then generated using linear regressions. 

The hazard concentration is a better predictor than Daphnia spp. and fate parameters are 

necessary to produce better predictions.  
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1 INTRODUCTION 

1.1 Background 

Pesticides are widely used in agriculture today as a means of increasing the quality and quantity 

of production in order to meet the consumption needs of a growing global population. These 

substances by their nature are intended to harm some organism, and as a result have the potential 

to induce and have in many instances caused unwanted impacts in the environment.  

Risk managers are faced with the challenge of deriving ecological thresholds that are protective 

of complex and dynamic ecosystems. Efforts to develop ecological hazard and risk assessment 

methods capable of evaluating chemicals in the aquatic environment began in the 1970s (Selck et 

al., 2002) and consequently, a variety of tools and methods are available. However, there 

continues to be much debate pertaining to the most appropriate parameters to be used, statistical 

strengths and validation.  

Prior to registering a chemical, regulatory agencies require single species laboratory toxicity data. 

Typically, these data are compared to predictive exposure levels and thresholds of acceptability 

are applied to the resulting ratio of exposure to toxicity. Other relevant information requested 

such as the physico-chemical and fate characteristics of the pesticide are used to help estimate 

exposure levels; however they are typically not factored into the toxicity determination of the 

compound.  

The main objective of this research is to investigate how well these single species laboratory data 

can predict real world effects and to offer a simple field-validated (but not site-specific) tool 

which can assist risk managers in better predicting the effects of pesticides on the aquatic 

environment.  
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This research constructs models using lethal or effect concentrations for single species, as well as 

Hazard Concentration values from Species Sensitivity Distributions (SSDs), which is an 

extrapolation method used to derive protective levels. To date, most regulatory assessments, 

whether in Europe or North America, still rely on extrapolating from a single species rather than 

SSDs. It is important to assess whether the extra effort required to generate SSDs results in a 

better prediction of impacts. 

The models are based on data from studies that use model ecosystems to determine the effects of 

pesticides on freshwater aquatic environments. These types of data are normally applied on a 

single pesticide basis; however in this study a large body of such model ecosystem research on 

several pesticides was used to build predictive models. 

The influence physico-chemical and fate characteristics of pesticides exert on toxicity is often 

qualitatively reported in analyses; however there are few studies that quantify that effect or 

attempt to use it in a regulatory framework.  

1.2  Literature Review  
1.2.1  Extrapolation Methods 

Extrapolation methods, which use known data to make predictions, are being used by risk 

assessors to determine the ecological thresholds for chemicals within the aquatic environment. 

There are two major groups of extrapolation methods: Application Factors (AF) and Species 

Sensitivity Distribution (SSD).  It should be noted that the SSD and AF are not necessarily 

exclusive. The AF can be applied to the output from an SSD.  

1.2.1.1  Application Factors 

The AFs (also called safety factors or uncertainty factors) are pre-selected multipliers or divisors 
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applied to some endpoint parameter of toxicity data. They typically vary from 10 to 1000, are 

dependent on the data available and are usually used when few toxicity data are available (Selck 

et al., 2002).  

In their first tier of risk assessment the European Union (EU) employs AFs in the form of 

Uniform Principles (UP) to set pesticide surface water threshold limits.  They require that the 

concentration must be less than 0.01*acute L(E)C50 (Lethal or Effect Concentration for 50% of 

the test population) fish or Daphnia for insecticides and 0.1x EC50 algae for herbicides. They 

also specify for prolonged exposure the concentration should not exceed 0.1*NOEC (No 

Observable Effect Concentration) Daphnia (21 days) and fish (28 days).  

AF methods have been criticised because they often do not have any scientific basis; they are 

deemed as using arbitrary values to predict an effect. However, they are much easier to use than 

the SSD. In addition, the AF approach is less time and data consuming.  

1.2.1.2    Species Sensitivity Distributions  

The SSD methods are based on the assumption that the variation in species sensitivity to a 

chemical is statistically distributed (Roelofs et al., 2003). Most SSD methods involve using single 

species toxicity data to generate cumulative distribution function curves, which are then used to 

extrapolate protective levels. However, a few methods that use ordered statistics (where the data 

are ranked before extrapolation) exist.  

North American and European development of the SSD were independent and scientists from 

either location were not aware of the work being done in the other continent, until 1992 (Suter, 

2002). The Netherlands has been using SSD for environmental risk assessment since 1989, while 

the European Community has employed its use to determine PNECs (Predicted No Effect 
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Concentration) since 1996 (Duboudin et al., 2004a).  

The SSD was first developed and used by the USEPA (United States Environmental Protection 

Agency) in 1978 to derive water quality criteria (Suter, 2002). This method was based on LC50 

values and used the Hazard Concentration for five percent (HC5) of the species. Today, the HC5 

is the most widely accepted HC%, however the principal of the 95% protection was disputed 

from the beginning (Forbes and Forbes, 1993; Grist et al. 2002).  

One of the major differences among SSD methods relate to the distribution used to model the 

toxicity data. Risk assessors are encouraged to use the best fitted distribution for their data 

samples on an individual toxicant basis (Wheeler et al., 2002). To date Europe and the US use the 

log-normal (Wagner and Løkke, 1991) or the log-logistic (Aldenberg and Slob, 1993) model 

whilst Australia and New Zealand use Burr III (Shao, 2000; Wheeler et al., 2002). The USEPA 

uses the log-triangular distribution.   

The log-logistic and the log-normal models are still the most popular, but Grist et al. (2002) 

highlight that so far there has been no one predetermined statistical distribution that has been 

well-fitted for all data samples.  The log-normal model is used often due to its simplicity and use 

in previous pesticide risk assessments. However, Wheeler et al. (2002) suggest that the log-

logistic model generally produces a better goodness of fit for the toxicity data and has extended 

tails thereby making it more conservative; but its calculations are more complicated than the log-

normal model.  

Okkerman et al. (1993) claim to have validated the methods of Aldenberg and Slob (1993, log - 

logistic), Wagner and Løkke (1991, log – normal) and a modified version of the Sloff (1992) 
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using organic compounds and results from multi-species tests (Grist et al. 2002). In addition, 

Selck et al. (2002) state that the Aldenberg and Slob method appears to be more protective than 

that of Wagner and Løkke, a claim which supports Wheeler et al. (2002). 

The SSD is not without its criticisms and its use in risk assessment is being debated especially as 

it relates to the species and type of toxicity data to be included, and the most appropriate end 

point of the SSD (Maltby et al., 2005; Schroer et al., 2004). First of all, many scientists point out 

that laboratory data do not reflect a wide range and random selection of the total environment, an 

assumption upon which SSD methods are based. In fact, the data available are mostly due to costs 

and manageability of the species.  

Forbes and Calow (2001) criticise the use of values of species that are not found with the 

particular ecosystem. Even though some supporters of the SSD approach encourage the use of 

data that are of the same habitats, geographic regions and taxonomic groups, the situation remains 

that such data are often not available. However, studies done by Hose and Van den Brink (2004) 

and Maltby et al. (2005) support the claim that sensitivity of organisms is independent of their 

geographic origin. The more recent studies construct separate SSDs based on major taxonomic 

grouping, for example Brix et al. (2001) used fish and invertebrates, Duboudin et al. (2004a) used 

vertebrates, invertebrates and algae and Maltby et al. (2005) used vertebrates, arthropods and 

non-arthropod invertebrates. Taxa selection for a distribution should be based on good biological 

and statistical grounds (Versteeg et al., 1999). 

Since risk managers tend to be more interested in the effect of a toxicant in the long term, chronic 

values are often deemed more important than their acute counterparts. However, while acute data 

tend to be more readily available for most substances, chronic data are often severely lacking. In 
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addition, the NOECs (No Observable Effect Concentrations) which are sought after have been 

heavily criticised as being statistically unsound and incapable of environmental protection 

(Scholze et al., 2001; Crane and Newman, 2000; Chapman et al., 1996).  

NOECs are derived through hypothesis testing and as a result the power of the statistical test and 

level of significance chosen can affect the outcome. In addition, no confidence intervals are 

supplied with these values. Most importantly, failure to detect a statistically significant effect 

does not necessarily mean that there was not a biologically significant one. Chapman et al. (1996) 

concluded that even the software packages selected to determine the NOEC can produce different 

results for the same data. NOECs are also subject to experimental design and the levels of 

concentration chosen by the experimenter. Crane and Newman (2000) point out that some studies 

revealed that it takes a 20 – 25 percent change before the hypothesis testing indicates that there 

has been a significant level of effect.  

A contentious issue relating to SSD construction is the number of data points needed to generate a 

proper model. OECD (1992) and the Australian water quality guidelines both stipulate the use of 

at least five data points to produce a SSD; while the European guidance document suggests eight 

(Hose and Van den Brink, 2004). Selck et al. (2002) state that at least four values in order to 

make a prediction. Wheeler et al. (2002) posit that ten should be used and Newman et al. (2000) 

states 15 to 55, with a median of 30 datapoints are needed to get the optimal HC5. However, the 

amount of data points needed also relates to the statistical distribution that the SSD model will 

take, for it is found that if a bootstrap approach is used a minimum of 20 are needed.  

However, despite the criticisms and concerns SSDs are increasingly being incorporated into risk 

assessments. Wheeler et al. (2002) propose that this is because they have greater statistical power 
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than approaches that rely solely on AFs. To date SSDs have been used with a variety of 

chemicals, such as metals, surfactants, pesticides, organic substances and inorganic substances, 

which are potential threats to the environment (Maltby et al., 2005). 

There have been arguments that state using a HC value does not take into account the effects on 

keystone species or other important species. The HC value which is based on structural endpoints 

is influenced by the debate between two contradicting theories on the relationship between 

ecosystem structure and function: 1) ecosystem structure will change before its function and 2) 

ecosystem function will change before its structure. If the former theory is true then vital species 

can be lost without a major change to ecosystems. Both structural endpoints and functional 

endpoints have been investigated, however there is still no consensus as to which is most 

appropriate for ecotoxicological studies (Selck et al., 2002).   

1.2.1.3    Application Factors Vs Species Sensitivity Distribution 

In an effort to evaluate which approach can better predict PNECs, Selck et al.  (2002) used AFs 

and SSDs based on Aldenberg and Slob and Wagner and Løkke methods constructed with 

NOECs  and EC50s (Effect Concentrations for 50% of the test population) or LC50s (Lethal 

Concentrations for 50% of the test population). When the PNECs generated were compared with 

field studies of Tributyltin (TBT) and alkylbenzene sulfonate (LAS), the results indicated that 

both AF and SSD appear to be protective - the lowest field effect concentration was higher than 

the PNECs (Selck et al., 2002).  

Brock et al. (2004) also compared an AF method with a SSD method, assessing the effects of two 

photosynthesis-inhibiting herbicides-metribuzin and metamitron. Their results also reveal that 

both approaches produce protective estimates when compared with the NOEC results found 
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within the enclosure experiments with these herbicides (Brock et al., 2004).  

Forbes and Forbes (1993) did a comparison between an SSD against one of the AF methods that 

was being used- dividing the lowest fish, crustacean and alga NOEC by 10. Of the eight 

chemicals used, both methods produced the same value for two, while the SSD method produced 

lower values for five and a higher value for one chemical. These authors concluded that 

advocating a method based on a more conservative prediction is not justifiable.  

1.2.1.4  Single Species Toxicity Data Vs Model Ecosystems Data  

Since laboratory LC50, EC50 and NOEC do not account for the abiotic environment or 

interactions between species within the ecosystem, they are deemed as inadequate measures of 

effects on field populations and communities; and therefore thought to be unfit to produce results 

explaining an entire ecosystem (Forbes and Forbes, 1993; Newman et al., 2000; Pratt and Cairns, 

1996; Selck et al., 2002). Instead, the use of results from multi-species tests and model 

ecosystems (such as mesocosms, experimental ponds and ditches, artificial streams, and 

microcosms) is preferred.  

Zeeman and Gilford (1993) suggest that the use of single species laboratory data to make 

predictions continue because of the general lack of more ecologically reliable data. However, 

ecotoxicological field studies are well established in risk assessment because of their ability to 

yield data on population and community effects. But, analysis of these data remains a challenge 

(Maund et al., 1999), in addition for these studies to be representative of the natural environment 

they need to be of a certain size and complexity, which can be costly (Boxall et al., 2002).  

Boxall et al. (2002) suggest that there are many limitations to using model ecosystems, especially 

as it relates to interpreting the results and extrapolating it to other situations (Brock et al., 2004). 
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Some major reasons according to them include: 1) the NOECs depend on the test concentrations 

selected; 2) studies are usually performed at different times and starting conditions; 3) studies 

vary in duration; 4) differences in sensitivities across experiments; 5) measured end points are not 

always consistent or comparable; and 6) statistical concerns about the number replicates done and 

type of analysis used on the data.  

Most of the risk assessments carried out on the effects of toxicants in the aquatic environment 

have been based on extrapolation methods that employed the use of single species laboratory data 

on Daphnia, fish and algae with survival, growth and reproduction being the usual endpoints 

(Selck et al., 2002). These are all structural endpoints and Forbes and Forbes (1993) emphasise 

that there are instances where community structure and function are not easily or consistently 

coupled. Therefore, in light of this information, using a protection level based on a structural 

change may be inadequate.   

However, some researchers such as Pratt and Cairns (1996) and Selck et al. (2002) support the 

theory that ecosystem function is less sensitive than ecosystem structure to disturbance due to 

redundancy of ecological functions which can allow the death of the more sensitive species but 

yet maintain ecosystem functioning. This theory was also supported by the findings of Kälquist et 

al. (1994) who found that even though the species diversity had changed after pesticide exposure 

the primary production levels remained the same. However, Brock et al. (2000) concluded that 

functional endpoints are more sensitive than structural ones to photosynthesis inhibiting 

herbicides. 

Single species extrapolation methods such as the SSD assume that the sensitivity of the organisms 

used for the laboratory studies is similar to that of the field (Wheeler et al., 2002). However, 
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organisms used for laboratory studies appear to be more sensitive than those from mesocosm 

studies because of lack of random selection of species and differences in water quality and habitat 

and shelter availability (Hose and Van den Brink, 2004; Versteeg et al., 1999). Also standard 

toxicity tests are usually performed for the most sensitive life stages of a species, and as a result 

there can be overestimation of population effects (Maltby et al., 2005; Boxall et al., 2002).  

Studies have shown that single species data can be extrapolated to make predictions similar to 

semi-field studies (Hose and Van den Brink, 2004; Boxall et al., 2002; Maund et al., 1999). Hose 

and van den Brink (2002) and Schroer et al. (2004) showed that SSD using laboratory data can 

produce EC50 values that are similar to those attained through mesocosm (semi-field) 

experiments, even though field endpoints may differ (field - abundance vs. laboratory – 

immobility). Therefore SSDs can be used to predict safe environmental concentrations (Hose and 

Van den Brink, 2004).   

1.2.2 Mesocosm Study Review: Mohlenberg et al. (2001) 

Mohlenberg et al. (2001) modelled the lowest effect concentration (positive or negative) results 

obtained from model ecosystem studies, using Partial Least Squares (PLS) to describe their 

relationship with experimental characteristics (day number for 1st dosing, dosing interval, latitude, 

longitude, mesocosm size - volume and depth), single species toxicity (HC5 and OECD-lowest 

L(E)C50 standardised species x 0.1) and fate properties (water solubility, log Kow and log Kd). 

The lowest effect concentrations were collected for macroinvertebrates (non-predatory, predatory, 

epibenthic fauna and sediment-living fauna); zooplankton (cladocera, copepoda and rotifera) and 

micro-algae.  

The HC5 was taken at the 50% CI and determined using the Wagner and Løkke (1991, log – 
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normal) method. Some of these HC5s were produced by pooling data according to taxonomic 

groups (algae, fish, insects, crustacea); however due to lack of toxicity data for some pesticides 

all data were pooled for SSD generation irrespective of taxonomic group.   

The Mohlenberg et al. (2001) database included 91 experiments (both single and multiple 

application regimes) from 112 publications with 3,635 effect concentrations for 31 pesticides. 

Eight herbicides: 2,4 D, alachlor, atrazine, glufosinate-ammonium, glyphosate, hexazinone, 

linuron and triclopyr; 22 insecticides: aminocarb, azinphos-methyl, bifenthrin, carbaryl, 

carbofuran, chlorpyrifos, cyfluthrin, deltamethrin, diazinon, diflubenzuron, dimethoate, 

endosulfan, esfenvalerate, fenitrothion, fenvalerate, lambda-cyhalothrin, lindane, methoxychlor, 

mexacarbate, permethrin, tebufenozide, tralomethrin; and the fungicide propiconazole. However, 

the number used in each PLS model varied.  

Their zooplankton model when restricted to single applications of insecticides had a predictability 

of 74%, while the predictability for herbicides and insecticide combined was 66%. The 

insecticide model was based on 11 experiments covering 11 insecticides: lindane, methoxychlor, 

chlorpyrifos, esfenvalerate, diflubenzuron, deltamethrin, diazinon, cyfluthrin, permethrin, 

bifenthrin, and lambda-cyhalothrin.  

The factors that affected toxicity for cladocera and copepoda were day of application, latitude, 

longitude, log Kow, Volume, HC and LC50/10. The model indicates that toxicity decreases in 

cold climates (high latitude), but increases in longitude caused increased toxicity. During the 

summer (high Day number) and in systems with larger volumes more toxic effects are expected. 

In addition hydrophobic substances are more toxic. However log Kd or depth were not considered 

to have an impact on toxicity. Mohlenberg et al. (2001) also conclude that cladocera and 
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chaoborus are more sensitive than copepoda and at any given concentration copepoda is expected 

to have 20% more reductions than cladocera.  

The macroinvertebrates model can predict 63% of observed effects (multiple applications) found 

in nine experiments, with the best predictions being for systems with sediments and macrophytes.  

The PLS model indicates all four sub-groups of macroinvertebrates are equally sensitive to 

pesticide exposure. However, there appears to be a difference according to the habitat of the 

organisms. More effects are expected at high latitudes and low longitudes in addition to shorter 

interval between applications and low number of doses.  Shallower systems are expected to 

produce increased toxicity and hydrophobic, adsorbable substances are more toxic. Low 

persistent pesticides had fewer effects than high ones with short term exposure.  

The micro-algae model of this study is able to explain 72% of the variance seen in nine 

experiments carried out in the field. The model indicates that pesticides added over a short period 

of time are more toxic to algae. In addition, algae are more sensitive to hydrophobic, adsorbable 

substances.  

1.2.3 Mesocosm Study review of Brock et al. (2000a,b) 

The research undertaken by Brock et al. (2000a,b) aimed to: 1) assess the ecosystem NOEC for 

individual pesticides, 2) to compare these threshold levels with water quality standards, and 3) to 

evaluate the ecological consequences of exceeding these standards. They collected ecological 

effects (on community metabolism, phytoplankton, periphyton, macrophytes, zooplankton, 

macro-crustacean and insects, molluscs, and fish and amphibian) from semi-field studies done 

using single, multiple and continuous applications in both running and stagnant water regimes. A 

total of fifty-six studies covering 20 herbicides and 62 studies on 21 insecticides were used.  
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The effects were classified according to their magnitude and duration using the following five 

categories – no effect, slight effect, pronounced short-term effect, pronounced effect in a short 

term study, pronounced long term effect. To enable comparison among pesticides a toxic unit was 

derived by dividing the nominal pesticide concentration by the geometric means of L(E)C50 

values for the most sensitive standard test species. Daphnia or sometimes a standard test fish 

species values were used for insecticides and Scenedesmus subspicatus; Selenastrum 

capricornutum or Chlorella vulgaris values for herbicides.  

The ecosystem NOEC was compared with the results from various methods used to set pesticide 

surface water thresholds such as:- 

1) The Maximum Permissible Concentration (MPC) which uses at least four chronic toxicity 

points (NOEC) for aquatic organisms according to the Aldenberg and Slob (1993) method 

or a modified USEPA method (Crommentuijn et al., 1997) when there were fewer than 

four. 

2) Uniform Principles (UP) which is used by the EU in their first tier of risk assessment and 

stipulates that surface water concentrations must be less than 0.01 * acute L(E)C50 fish of 

Daphnia and 0.1 * EC50 algae, and lower than 0.1 * NOEC Daphnia (21 days) and fish 

(28 days) prolonged exposure. Brock et al. (2000a,b) used both the liberal and 

conservative interpretation of the UP. Both forms used the recommended multiplier for 

the species type, however the liberal form used the geometric mean L(E)C50 value while 

the conservative form used the most sensitive L(E)C50 value available.  

Brock et al. (2000a,b) concluded that values derived by the MPC and UP methods were 
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sufficiently protective of aquatic ecosystems for all types of insecticide exposure regimes. These 

researchers consider the MPC values derived for herbicides by the modified EPA method as 

being protective, but nonetheless state some adjustments are needed for certain compounds. They 

propose that the UP criteria seem protective with photosynthesis and growth inhibiting 

herbicides, but not with auxin stimulators (underestimation factor as high as 100).  

1.2.4 Review done by Brock et al. (2006)  

This review examined the aquatic risk of pesticides, ecological protection goals and common 

aims in the EU legislation. The authors also make several proposals based on their findings with 

the aim to harmonise the system used in the EU. The scientific results used are largely based on 

the study briefly described above - Brock et al. (2000a); Maltby et al. (2005) who tested the 

protectiveness of various HC5s against the ecosystem NOEC for 16 insecticides; Van den Brink 

et al. (2006) who examined the protectiveness of various HC5s against the ecosystem NOEC for 

nine herbicides; and current work on fungicides being carried out by Maltby. 

The HC5 and HC50 values (at the median: 50% and lower limit: 95% confidence intervals) based 

on Aldenberg and Jaworska method (2000 – log-normal) using acute and chronic data were 

calculated in the Van den Brink et al. (2006) study.  The SSDs were constructed for algae, 

macrophytes, invertebrates and vertebrates for three herbicides (atrazine, diquat, 2,4-D) and for 

the other herbicides (diuron, linuron, metamitron, metribuzin, pendimethalin, simazine) SSDs 

were generated for primary producers and invertebrates and/or vertebrates. These results were 

compared with semi-field studies. The research revealed that the lower limit HC5 value with 

acute data was able to protect the aquatic environment, while the acute data median HC5 was able 

to protect the ecosystems against short-term herbicide exposure. 
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Maltby et al. (2005) generated HC5 values (at the median: 50%, lower limit: 95% confidence 

intervals, and upper limit: 5%) for 16 insecticides: (azinphos – methyl, carbofuron, chlorpyrifos, 

diazinon, fenithrothion, parathion – ethyl, parathion – methyl, cypermethrin, deltamethrin, 

fenvalerate, lambda – cyhalothrin, permethrin, lindane, methoxychlor, carbaryl, diflubenzuron). 

The SSDs were generated taxonomically (vertebrates, arthropods, non-arthropod invertebrates) 

and for different habitats (saltwater, freshwater, lentic, lotic) and geographic regions (palaeartic, 

neartic, temperate, tropical). The latter two groupings were not found to influence the HC5 

results.  Maltby et al. (2005) concluded that the lower limit HC5 value is able to protect aquatic 

ecosystems; while the median HC5 is generally protective of these freshwater environments.  

Brock et al. (2006) relate that the results from Maltby’s current work on fungicides (azoxystrobin, 

carbendazim, pentachlorophenol, triphenyltin acetate) indicate that the median HC5 is not 

protective of the environment. However, the lower limit HC5 is able to protect the ecosystem 

from two of the four fungicides (azoxystrobin, pentachlorophenol).  The general conclusion from 

Brock et al. (2006) is that all median HC5 values can protect the environment against slight 

effects and the lower limit HC5 values can ensure against any effects. 

1.3  Hypotheses  

My research was aimed at testing the following hypotheses:-  

1) Empirically based models using laboratory data such as toxicity, fate and physico-

chemical properties of pesticides can be constructed to predict real world effects.  

2) The basic physico-chemical and fate properties of the pesticide, in addition to the 

structural properties of the system, help predict of the impacts seen.  
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3) HC5 values are more predictive than LC50 values required for registration.  

4) Better predictions are obtained from modelling pesticides types (insecticides and 

herbicides) separately. 

2 METHODS 

2.1  Ecosystem studies 
Pesticide impact studies in freshwater lentic and lotic mesocosms, ponds and streams were 

collected from the published literature, data evaluation records from unpublished studies 

submitted by registrants to the USEPA, and monitoring reports for Spruce Budworm and other 

forest pest spraying programmes. 

Criteria for selection:- 

1) The studies were performed using a realistic freshwater aquatic ecosystem of adequate 

size (more than  80L volume for lentic systems) and contained a range of species. 

2) The experimental design was clear or easily obtained if not included with results. 

3) Systems did not include possible traces of other pesticides. 

4) Effect information was available for a single application for which the pesticide water 

concentration was known or could be easily deduced. 

5) A pre-treatment or untreated control system was used. 

6) Statistical significance of the results were indicated, or studies had extremely sound 

experimental designs in addition to quantification of effects that can clearly be considered 
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major (e.g., death of all organisms in the treated systems, compared to negligible change 

in the control systems). 

Some studies contained more than one experiment, that is, more than one pesticide, concentration 

or system characteristic was used.  Information extracted from the studies included system 

structure and location characteristics such as 1) type (pond, lake, mesocosm or stream); 2) 

dimensions (length, diameter, width or depth); 3) size of enclosure; 4) volume of water within 

enclosure; 5) water regime (lentic or lotic) and 6) country. Water quality properties such as pH, 

temperature, dissolved oxygen, conductivity, total phosphorus and total nitrogen were noted when 

available. Species composition was also recorded, especially fish and macrophyte presence.  

Endpoints in the two water regimes – lentic and lotic – were not easily comparable, consequently 

an attempt was made to model them separately. However, there were few lotic studies and 

therefore only entries from lentic systems were used. Also, for modelling purposes only two 

structural properties of the system were used – the volume and surface area to volume ratio which 

was calculated by using the dimensions or size of the system and volume within the enclosure.  

While the number of replicates of control and treated systems was known for each experiment, 

the results reported were based on averages of these replicates. The trade name and formulation 

of the pesticide were recorded, along with the solvent into which it was dissolved. Application 

method (e.g., spray, spray drift, sub-surface release), regime (single or multiple), rate and date are 

included in the database.  

Vital information such as peak pesticide concentration in the water column; taxonomic group and 

effect and type of control (pre-treatment or untreated) were recorded. And when available so were 
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study duration; acclimatisation period of the system prior pesticide addition; sampling regime; 

type of effect (primary or secondary) and recovery. 

2.2  Laboratory data 
2.2.1  LC 50 and EC 50 laboratory single species toxicity data  

Whiteside et al. (2007) compiled a database of single species toxicity values [L(E)C50], for both 

fresh and salt water species, based on the USEPA pesticide registration data, Agritox database, 

European Commission pesticide review reports , the Pesticide Manual (Tomlin, 2003), and the 

USEPA ECOTOX database.  They generated separate Species Sensitivity Distributions (SSDs) 

for crustacea, insecta, fish, algae and macrophytes from which a Hazard Concentration for the 

sensitive 5% of the population (HC5, median estimates) was obtained.  

Both salt and fresh water species were grouped together (Maltby et al., 2005) and based on the 

statistical distribution of the data the SSDs were created in one of three ways:- 

1) If the data available for a pesticide were (by visual examination) normally distributed and 

had at least 5 species values, the ETX2.0 programme was used. This software, which is 

based on a log-normal distribution, was developed by van Vlaardingen et al. (2004). Since 

this was the preferred method of HC5 estimation, outliers were removed from datasets in 

order to achieve normality; however in the event this did not happen the other methods 

were resorted to.  

2) If the dataset was not normal or normality could not be achieved by removal of outliers, 

and there were more than ten values available the BurrliOZ programme was used. This 

software is based on Burr III distributions, which come from a family of very flexible 
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distributions which makes good approximations of many commonly used distributions 

such as log-normal, log-logistic and Weibull.  

3) If the dataset could not meet the requirements conditions for the other two programmes, in 

terms of size and distribution, the ETX 2.0 small sample method was used. The mean of 

the data was calculated and then an externally derived standard deviation was applied. 

This externally derived standard deviation was taken from those SSDs that were based on 

normally distributed data. It was done for the same major taxonomic groups (crustacea, 

insecta, fish, algae and macrophytes) and for similar classes of pesticides (insecticides, 

herbicides, fungicides and other pesticides). 

The median estimate of the HC5 was generated (despite the risk of under-protection) so as to not 

bias the data because of lower sample sizes. 

From the sources cited above, geometric means of LC50 data were calculated for Daphnia spp, 

Scenedesmus subspicatus and Selenastrum capricornutum.  

2.2.2  Pesticide physico-chemical and fate properties  

Octanol-water partition coefficient (Kow), organic carbon absorption coefficient (Koc), aerobic 

soil biotransformation half-life (ASB), aerobic aquatic biotransformation half-life (AAB) and 

water photolysis half-life (WPHL) were collected for those pesticides that had suitable model 

ecosystem studies. These data came from the database created by Whiteside et al. (2007), PMRA 

(Pest Management Regulatory Agency – Government of Canada), The Pesticide Manual (2003), 

European Commission Pesticide Review reports, EXTOXNET (EXtention TOXicology 

NETwork), USDA NRCS 2005 (United States Department of Agriculture - National Resources 

Conservation Service), PAN (Pesticide Action Network), US EPA pesticide fate database and 
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InChem. When more than one value was found for a property for the same pesticide, the 

geometric mean of those values were used. 

Correlation analysis done using ASB and AAB values from 117 pesticides from the PMRA 

database revealed an expected strong relationship. The relationship equation was then used to fill 

in missing AAB values. When possible hydrolysis was matched according to the average pH of 

the system, alternately the half-life for a neutral pH was used.  

Those fate properties which were considered as persistent were given a value which was more 

than the highest known half-life for the pesticides in the database. Tebuthiuron was assigned a 

value of 1520 days for aerobic soil biotransformation half-life; 1095 days was given as the water 

photolysis half-life of alachlor, carbendazim, hexazinone, lindane, metsulfuron methyl and 

simazine; and 14 pesticides were assigned a hydrolysis half-life of 1825 days.  

2.3  Database construction 

A database was constructed in Microsoft Excel® using the information extracted from the studies, 

laboratory data and fate characteristics of the pesticides. Standardisation was done prior 

modelling. First of all, entries for same variables were converted into common units.  

Despite variation in power of the statistical tests and experimental designs used, responses to 

pesticide treatment were considered significant in accordance to the claims of individual study 

authors. A code was assigned to the results in order to indicate the taxonomic level they were 

reported at. Results were also coded binomially: 1 = effects (increase or decrease) and 0 = no 

significant effects.  

Quantified effects of maximum impacts collected from tables, text or through estimation from 
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graphs, were changed to percentages, which were then logged and arc-sine transformed in the 

case of decreases. It must be noted that the majority of statistically significant effects reported are 

at least a 70% change.  

Since many studies did not include the magnitude of change for insignificant responses, an effect 

ratio of one (1) was assigned to cases with no significant effects. Effects were calculated using 

the following equations:- 

1) decrease was observed  

effect ratio  =  

[ ]
[ ]treatmentinquantity

controlinquantity

  

Equation 1 

2) increase was observed  

Equation 2 
 

effect ratio  =  [ ]
[ ]controlinquantity

treatmentinquantity  

Using this system to quantity responses to pesticide treatment, effects are depicted by a value 

over one, and the larger that value is, the greater the magnitude of impact.  

The laboratory data were standardised to produce Toxicity Units (TU), which entailed dividing 

the peak pesticide water column concentration by the species L(E)C50 geometric mean or HC5. 

(see Equation 3) (Brock et al., 2000a; Mineau, 2002) These TU values along with the physico-

chemicals properties and surface area to volume ratio were all log-transformed.  
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Equation3 

TU =    [ ]
( )[ ]5/50 HCCELmeangeometric

pesticideofionconcentrat  

The database was then carefully examined to determine the major taxonomic groups that were 

represented. It was found that crustacea, algae, and insecta were the groups with the most entries 

and there was enough data to model copepods and cladocera as distinct groups.  

In order to avoid pseudo-replication, an overall experiment count ratio of effects was calculated 

within the three major sub-data groups (algae, insecta, crustacea) for effects recorded at the 

species, and family level in the case of insecta, since this group is extremely diverse and many 

studies reported at this taxonomic level. To build-up the sample for insecta modelling, effects at 

the species levels were examined and included at the family level.  

The number of affected species or families (both increases and decreases) was divided by the 

total number species or families recorded for that experiment (see Equation 4).  

Equation 4 
 

count ratio  of effect  =     [ ]
[ ]familiesorspeciessystemwithinnumbertotal

familiesorspeciesaffectednumber
(

(  

Increases were grouped with the decreases, because any statistically significant response was 

considered important and an indication of ecosystem change due to pesticide treatment. Overall, 

there were very few increases, with most being at the species level. 

2.4  Modelling and Analysis 
2.4.1  Sub-data sets 
Prior to modelling data were pooled in the following groups:- 
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1) Taxonomic: genus to phylum  

2) Pesticide type: all pesticides (AP), insecticides (IA), herbicides (HA).  

3) Structural ecological endpoints: abundance, biomass, drift   

In order to achieve a higher degree of realism the a priori decision was made to only derive a 

predictive model when there were at least six pesticides in the dataset.  

2.4.2  Validation datasets 

The sub-data sets used for modelling were first examined to see whether they were large enough 

to separate into training (2/3) and validation (1/3) sets. Generally if the data set contained over 30 

entries, a validation set was collected. The entries were assigned numbers from one to three and 

all entries labelled as two were selected for the validation set. The selection of a validation set 

was not strictly random, the method outlined above was used to increase the type of pesticides 

available for modelling.  

2.4.3  Empirical Modelling 

STATISTICA® 6.0 was used to do all the modelling and statistical analysis. The original intent of 

this study was to generate models using both logistic and linear regressions. However, only linear 

regression models were generated, due to a number of reasons such as the nature of the data 

(inequitable distribution of effects to no effects, with effects accounting for over ¾ of the data in 

most samples), time constraints and exploratory analyses indicating that not much more would be 

gained from logistic modelling. In addition, it should be noted that only one effect entry per 

experiment was included (as dependent variables) for modelling, in order to eliminate pseudo-

replication.  
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Prior to modelling the normality of independent continuous variables (fate properties, physico-

chemical properties, TUs, structural properties of the system, quantified changes) was tested by 

visual examination of normal probability plots. It was found that these variables were all normal 

when log-transformed, and consequently the log-transformed values of these variables when used 

for subsequent analyses.  

The correlations between these continuous independent variables were also tested. In a nutshell, 

the log-transformed geometric means values for both Scenedesmus subspicatus and Selenastrum 

capricornutum were highly correlated with each other (r = 0.93; p=0.000) and with HC5 values 

for algae (r = 0.80 (p=0.000) and r = 0.92 (p=0.000) respectively). Log-transformed Daphnia 

geometric L(E)C50 values were correlated with the log-transformed HC5 crustacea (r= 0.95; 

p=0.000) and log-transformed HC5 insecta (r= 0.83; p=0.000).  

Table 1 contains the correlations between the different fate parameters. Log Koc is only 

correlated with log Kow (r = 0.38; p=0.009); while log Kow is also correlated with log WPHL (r 

= -0.31; p=0.050). Log ASB is correlated with log WPHL and log AAB; and log HHL is 

correlated with both log ASB and log AAB (r = 0.26; p=0.000 and r = 0.50; p=0.000 

respectively).  

In order to effectively test the hypotheses it was decided that the relevant effects and all 

explanatory variables would be subjected to the Akaike’s Information Criterion (AIC) for the 

selection of the best approximating models (Burnham and Anderson, 2002). The AIC is based on 

maximum likelihood estimation and it penalises for the number of parameters within a model, 

thereby facilitating parsimony. AIC works on a relative scale and the model with the smallest 

AIC value is considered the best. 
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As a rule of thumb AIC correction estimates (AICc) should be used preferentially to AIC values 

from samples sizes that produce a quotient of less than 40 when divided by the total number of 

estimated parameters (Df (degrees of freedom) + 2)  (Burnham and Anderson, 2002). 

Consequently, the AICc, which is based on the AIC, sample size (n) and total number of 

estimated parameters (K) was calculated for each model (see Equation 5).  

Equation 5 

AICc = AIC + ( )
1
12
−−
+

Kn
KK  

There were a few instances that pivot sweep errors occurred which sometimes lead to under-

reporting of the Df; this was corrected before any further calculations or analyses were done.  It 

appears that these errors occur in small dataset with many correlated variables. Models with 

correlated variables or without a TU were not considered to be acceptable for predicting effects 

and were therefore omitted from further analyses.  

In order to get the best approximate model the AICc difference was calculated by subtracting the 

AICc values from the lowest AICc value (the posited best model). The rough rule of thumb states 

that those models that had a difference of less than or equal to two can also be considered as the 

best approximating models. Those models with a difference between two and four have less proof 

that they are probably the best, while there is no evidence to support models with a difference of 

ten or greater as plausible.   

Akaike’s weights ratio were also calculated since it is credited as a better means of deciding 

whether the proposed best model truly is the best model from the list of candidate models. First 

Akaike’s weights (wi) calculated for each model based on the AICc difference (AICc) and the 
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total ∆ AICc for all models (see Equation 6). 

        Equation 6 

wi = 
∑ = ⎟
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Then the Akaike’s weight ratio for each model is attained by simply dividing the highest weight 

(proposed best model) by the Akaike’s weight of that model.  

Those models that had an AICc difference of less than or equal to two, and models based solely 

on the toxicity units were created using linear regression in order to investigate their predictive 

strengths. Consequently, the adjusted coefficient of determination (R2) was noted, since it takes 

into account the number of variables and whether improvements they produce are more than 

would be expected by chance. In addition the statistical significance status (at the 0.05 level) of 

each predictor variable in the model was collected from the regression output data sheet.  

Model validation was done by predicting impacts using the model equations of the best 

approximating models or any of particular relevance to analysis (mostly those that used only a 

TU explanatory variable) and the data from these validation sets. These predicted values were 

then compared with the actual observed values by means of correlation analysis.  

The first hypothesis states that empirically based models using laboratory toxicity data, fate 

properties and physico-chemical properties of pesticides can be constructed to predict real world 

effects. In order to ascertain whether this hypothesis can be accepted the statistical significance of 

the model was checked by looking at the p-values found within the output sheets from the AIC 

and linear regression.  
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The other hypotheses within this study are comparative in nature. Some were tested by 

examination of the AICc model selection, AICc difference and Akaike’s weight ratio. Evaluation 

of models based on linear regressions was done through examination of the R2s along with the 

statistical contribution of each model parameter. 
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Table 1:  Correlations for 41 pesticides. 

  log Kow log Koc LASB LAAB L WPHL L HHL L Volume L TSA/V R 

1.0000 .3757 -.126 .055 -.3050 .024 .055 .049

p= --- *p=.009 p=.408 p=.720 *p=.050 p=.691 p=.464 p=.513

log Kow 

 N = 47 N = 45 N = 45 N = 42 N = 287 N = 233 N = 179

.3757 1.0000 0.12 .2700 -.2717 .046 -.092 -.037

*p=.009 p= --- p=.418 p=.073 p=.082 p=.438 p=.220 p=.626

log Koc 

N = 47 N = 45 N = 45 N = 42 N = 287 N = 233 N = 179

-.126 0.12 1.0000 .6376 .3822 .2575 -.255 .1950

p=.408 p=.418 p= --- *p=.000 *p=.014 *p=.000 *p=.000 *p=.010

LASB 

N = 45 N = 45 N = 45 N = 41 N = 278 N = 219 N = 174

.055 .2700 .6376 1.0000 .2046 .5005 -.1244 -.0132

p=.720 p=.073 *p=.000 p= --- p=.199 *p=0.00 p=.066 p=.863

LAAB 

N = 45 N = 45 N = 45 N = 41 N = 278 N = 219 N = 174

-.3050 -.2717 .3822 .2046 1.0000 -.0687 -.1137 .1086

*p=.050 p=.082 *p=.014 p=.199 p= --- p=.277 p=.147 p=.166

L WPHL 

N = 42 N = 42 N = 41 N = 41  N = 252 N = 164 N = 164
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Table 1:  Correlations for 41 pesticides. 

  log Kow log Koc LASB LAAB L WPHL L HHL L Volume L TSA/V R 

.024 .046 .2575 .5005 -.0687 1.0000 .0463 -.0476

p=.691 p=.438 *p=.000 *p=0.00 p=.277 p= --- p=.486 p=.532

L HHL 

N = 287 N = 287 N = 278 N = 278 N = 252 N = 228 N = 174

.055 -.092 -.255 -.1244 -.1137 .0463 1.0000 -.8775

p=.464 p=.220 *p=.000 p=.066 p=.147 p=.486 p= --- *p=0.00

L Volume 

N = 233 N = 233 N = 219 N = 219 N = 164 N = 228 N = 179

.049 -.037 .0195 -.0132 .1086 -.0476 -.8775 1.0000

p=.513 p=.626 *p=.010 p=.863 p=.166 p=.532 *p=0.00 p= ---

L TSA/V R 

N = 179 N = 179 N = 174 N = 174 N = 164 N = 174 N = 179

KEY:   

 LAAB – log-transformed aerobic aquatic biotransformation 

LASB – log-transformed aerobic soil biotransformation 

L HHL - log-transformed  hydrolysis half-life 

LTSA/V R – log-transformed  total surface area to volume ratio 

 

L Volume - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed organic carbon absorption coefficient 

Log Kow - log-transformed octanol –water partition coefficient 

* indicates statistical significance 
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3 CRUSTACEA 

3.1  Modelling Crustacea Abundance Responses 

The data used for these models reflect crustacea abundance responses to pesticide applications in 

lentic systems. Data were separated and modelled according to the following categories: 

1) crustacea species response  

2) cladocera response 

3) copepoda response 

The explanatory variables entered into the AIC analyses included log-transformed toxic units 

based on the geometric means of Daphnia species (L TU Daphnia) and hazard concentration for 

5% of crustacean species (L TU HC5 - C), this was done to test the hypothesis that hazard 

concentrations are better predictors of ecosystem effects than single species toxicity data. Log-

transformed structural properties of system (volume – L volume and surface area to volume ratio 

- L TSA/V R) and all log-transformed fate and physico-chemical properties of the pesticide 

(octanol-water partition coefficient – log Kow, organic carbon absorption coefficient – log Koc, 

aerobic soil biotransformation - L ASB, aerobic aquatic biotransformation - L AAB, water 

photolysis half-life - L WPHL, hydrolysis half-life - LHHL) were initially entered into the AIC.  

The dataset allowed modelling with two different pesticide groupings: 1) all pesticides combined 

(AP) and insecticides alone (IA). Modelling data for herbicides alone (HA) was not possibly due 

to under-representation.  Validation sets obtained were used to test the validity (by means of 

correlation analyses) of the best approximate and other models of interest, such as those based 

solely on the Toxic Units (TUs).  
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The magnitude of impact is assessed at 0.01 * TU Daphnia to enable comparison with the EU’s 

Uniform Principles that use a multiplier factor of 0.01 on Daphnia L(E)C50 to derive a No Effect 

Concentration (NEC) for pesticides in surface water (Van den Brink et al. 2002; Brock et al. 

2001). The impact is also assessed for 0.1 * TU HC5-C for best models that were based on this 

parameter and / or L TU HC5-C models. Risk managers usually use NOEC values for SSD 

extrapolations, however this research uses HC5 values based on geometric means for L(E)C50s. 

A safety factor of ten is deemed appropriate to extrapolate chronic data based on acute values 

when there is more than one test done (Chapman et al., 1997). In addition, Van den Brink et al. 

(2003) used a safety factor of ten in their calculation of NECs using HC5 values based on EC50 

data, so their principle was adopted.  

3.2  Modelling Crustacea Species Responses 

These data report on 14 families in eight orders (see Figure 1). About 65% of the species belong 

to the order cladocera, which was represented by seven families: bosminidae, chydoridae, 

daphniidae, holopediidae, ilyocryptidae, macrothricidae and sididae. Approximately 25% of the 

species came from the three families of the sub-class copepoda: cyclopidae, diaptomidae and 

eudiaptomus graciloides (a calanoida species). The remaining ten percent were from the families 

- hyalellidae, asellidae, candonidae and moinidae.  

Seventy-eight entries were available for modelling. They are drawn from 30 studies covering 21 

pesticides – one fungicide (carbendazim); five herbicides (atrazine, glufosinate-ammonium, 

hexazinone, metribuzin, metsulfuron methyl) and 15 insecticides (carbaryl, carbofuran, 

chlorpyrifos, cyfluthrin, cypermethrin, diflubenzuron, esfenvalerate, fenitrothion, lindane, methyl 

parathion, permethrin, phorate, pyridaben, tebufenozide, temephos).  
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The dependent variable is a count ratio of effect, derived by dividing the number of statistically 

significantly affected crustacea species (increases and decreases in abundance) by the total 

number crustacea species recorded for that experiment (see Equation 4). Four experiments within 

the data used for modelling had at least one species that statistically significantly increased when 

compared to the concurrent control; two were from permethrin studies and the other two from 

tebufenozide.  

The validation set consists of one fungicide (carbendazim); five herbicides (glufosinate-

ammonium, hexazinone, linuron, metribuzin, metsulfuron methyl); and 14 insecticides (azinphos-

methyl, carbofuran, chlorpyrifos, cypermethrin, diflubenzuron, esfenvalerate, fenitrothion, 

lindane, methyl parathion, permethrin, phorate, pyridaben, tebufenozide, temephos).  

3.2.1    Model based on All Pesticide Data 

Of 96 possible model combinations consisting of a TU and uncorrelated variables, 14 are 

considered as the best approximating models based on AIC difference of less than two (See Table 

2). All of these models are statistically significant, can be statistically validated using the 

independent dataset and account for 46 to 50 percent of the variance in crustacea overall species 

responses.  

The AIC scores revealed that models based solely on the TUs were statistically significant, 

however there is not enough evidence supporting them as being the best to explain the effects 

seen. The L TU Daphnia model has an adjusted R2 of 0.45 (see Equation 7) and the L TU HC5-C 

model has an adjusted R2 of 0.45 (see Equation 8). 
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Equation 7 
L Daphnia TU 

Count Ratio of Effect = [0.7129 + (0.141 * L TU Daphnia)] 

Equation 8 
L TU HC5-C  

Count Ratio of Effect = [0.4751 + (0.142 * L TU HC5-C)] 

Eleven of the 13 best approximating models contain the Daphnia TU and the other two are based 

HC5-C TU. More than half of these 13 models have L HHL as a predictor variable and many of 

the others contain LAAB. An increase in either of these variables is predicted to reduce the 

effects seen on crustacean species abundance.  

Eight of the models, proposed by AIC to be the possible best, have L Volume as a predictor 

variable; while an additional model has the negatively correlated L TSA/V R. However, it must 

be noted that, with the exception of one model, these variables were not statistically significant 

contributors to their respective models.  Systems of smaller volumes and larger surface area to 

volume ratio are expected to show more effects. L WPHL, log Kow and log Koc are not 

considered to be statistically significant contributors to their respective models below p=0.05.  

The results indicate that Daphnia TU is better at predicting effects of pesticides on crustacean 

species than HC5-C TU and HHL is the most important fate parameter for model prediction using 

this dataset. The L TU Daphnia and L HHL (adjusted R2 = 0.48, see Equation 9, see Figure 2) 

model has both predictor variables as being statistically significant factors below p=0.05; and it is 

the most parsimonious among the best approximating 14 models. The results seem to suggest that 

this model is the best for the data.  
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Equation 9 
L TU Daphnia and L HHL 

Count Ratio of Effect = [0.9075 + (0.1250 * L TU Daphnia) + (-0.0883 * L HHL)] 

 

3.2.2    Models based on All Pesticides Data from Fish-Free Systems 

To check whether fish within a system influences the results and therefore the predictive ability 

of the models, a separate AIC table was generated using the previously outlined criteria with data 

from fish-free systems only. This data sample contains 58 entries from 19 studies covering 16 

pesticides – one fungicide (carbendazim), four herbicides (glufosinate-ammonium, hexazinone, 

metribuzin, metsulfuron methyl) and 11 insecticides (carbaryl, carbofuran, chlorpyrifos, 

cypermethrin, diflubenzuron, fenthion, lindane, permethrin, phorate, tebufenozide, temephos). 

The validation set consists of carbendazim; four herbicides (glufosinate-ammonium, hexazinone, 

metribuzin, metsulfuron methyl) and eight insecticides (carbofuran, chlorpyrifos, cypermethrin, 

lindane, permethrin, phorate, tebufenozide, temephos).  

Of the 95 possible models with a TU and uncorrelated variables, five are indicated by the AICc 

difference being best approximating models (see Table 3). All five models are statistically 

significant, can be statistically validated using the independent dataset and account for 55 – 57% 

of the variance seen in the species effects, suggesting that, indeed, predictability of effects is 

higher when without fish as a confounding factor. The L Daphnia TU (adjusted R2 = 0.55, see 

Equation 10, see Figure 3) model was among the five; however the model based on HC5 – C TU 

alone (adjusted R2 = 0.51, see Equation 11) showed less evidence of being the best for this data.  
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Equation 10 
L TU Daphnia 

Count Ratio of Effect = [0.7788 + (0.1579 * L TU Daphnia)] 

Equation 11 
L TU HC5-C  

Count Ratio of Effect = [0.5091 + (0.11504 * L TU HC5-C)] 

The L TU Daphnia model is a strong competitor for best approximating model based on the 

principle of parsimony and minute model improvements in predictive power received through the 

addition of other variables. In fact, the only statistically significant variable below p=0.05 level 

for these best approximating models is L TU Daphnia. L HHL, though not statistically 

significant, is present in 3/5 of the most probable models. However, the improvement it brings in 

comparison to the L TU Daphnia model is minimal, the difference in adjusted R2 ranges from 

0.01 to 0.02.  As hydrolysis half-life decreases the effects seen is expected to increase. 

The results indicate that Daphnia TU is better to use when predicting the effects of pesticides 

from lentic fish-free systems and HHL may be an important fate parameter for modelling. The L 

TU Daphnia and HHL (adjusted R2 = 0.57, see Equation 12, see Figure 4) can vie as the best 

model for these data because it contains both variables that appear to be important for prediction, 

in addition to being the best model as selected by the AIC scores.   

Equation 12 
L TU Daphnia and HHL 

Count Ratio of Effect = [0.9328 + (0.1406 * L TU Daphnia) + (-0.0756 * L HHL)] 
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3.2.3    Models based on Insecticides Data  

When the insecticide data were modelled alone, of the 96 possible models without correlated 

variables and a TU, only two are considered by AICc difference to be the best approximating 

models for the data (see Table 4). Both models are statistically significant, can be validated using 

an independent dataset, could account for 48% of the variance of overall species system effects 

and are based on Daphnia TU. This predictive strength is comparable to the models generated 

with all pesticide data, but less than the best approximating models based on all pesticide data but 

came from fish-free systems.  

Models based on either Daphnia or HC5 – C TUs alone are not considered to have enough 

evidence supporting them as the best approximating models for these data (adjusted R2s = 0.22; 

see Equations 13 and 14).  

Equation 13 
L TU Daphnia  

Count Ratio of Effect = [0.7065 + (0.1100 * L TU Daphnia)] 

Equation 14 
L TU HC5-C  

Count Ratio of Effect = [0.3986 + (0.1639 * L TU HC5-C)] 

The next best six models were included in the analyses to enable examination of some possible 

trends. Firstly, all of these models contain L HHL as a statistically significant contributing factor 

and as HHL increases, less crustacea species are predicted to be affected. Secondly, three-quarters 

have either Kow or its positively correlated Koc counterpart. Increases in either of these two 

coefficients are predicted to induce more effects. Thirdly, half of these models also include a 
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structural property of the system, though it is not a statistically significant contributor and did not 

improve model prediction by much, if at all.  

The results indicate that Daphnia TU better predicts the proportion of crustacea species affected 

by insecticide exposure than HC5-C TU. In addition, it appears that HHL and Kow enable the 

generation of stronger predictive models. L TU Daphnia, log Kow and L HHL (adjusted R2 = 

0.48, see Equation 15, see Figure 5) is very likely the best model for predicting effects of 

insecticides on crustacea species in lentic systems. This model is supported by 1) the principle of 

parsimony, 2) no variation between the coefficients of determination of the two best approximate 

models, and 3) its selection by AIC to be the best.  

Equation 15 
L TU Daphnia, log Kow and L HHL 

Count Ratio of Effect =  [0.7022 + (0.0998 * L TU Daphnia) + (0.0750 * log Kow) + (-

0.1704 * L HHL)] 

 
3.2.4    Models based on Insecticides Data from Fish-Free Systems 

Modelling only insecticide data was done using entries that come solely from fish free systems. 

The AICc difference indicated that of the 96 models possible that have a TU and no correlating 

variables, four compete as being the best for these data (see Table 5). All of these models are 

statistically significant, could explain 64 – 68% of the variance on the species effect and are 

based on Daphnia TU. The predictive strength of these models is much better than their 

counterparts based on data from both fish-present and fish-free systems combined. Three of the 

four models can be statistically validated with an independent dataset.  

L TU Daphnia (adjusted R2s = 0.37; see Equation 16) or L TU HC5 – C (adjusted R2s = 0.29; see 
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Equation 17) models are not considered to have enough evidence to support that they are the best 

for these data.  

Equation 16 
L TU Daphnia 

Count Ratio of Effect = [0.7651 + (0.1287 * L TU Daphnia)] 

Equation 17 
L TU HC5-C  

Count Ratio of Effect = [0.3734 + (0.1932 * L TU HC5-C)] 

Hydrolysis half-life is included in all four models and it is a statistically significant contributor in 

each. Three of the models also contain WPHL as a predictor variable, while one had Kow and 

three included Koc. The two physico-chemical properties are not statistically significant 

contributors to their respective models, however WPHL is statistically significant in one of the 

three best approximating models in which it is included. Shorter hydrolysis and water photolysis 

half-lives are expected to increase the proportion of crustacea species affected. While high Koc or 

Kow values are expected to facilitate increased effects.  

The results indicate Daphnia TU better predicts the proportion of crustacea species affected by 

insecticide exposure in fish-free systems than HC5-C TU. In addition, the fate parameters – HHL 

and WPHL – appear to be important for modelling. The L TU Daphnia, L WPHL and L HHL 

model (adjusted R2 = 0.65; see Equation 18; see Figure 6) can be considered the best for this data 

since it is parsimonious and can be validated using an independent data set, in addition to being 

the only best approximate model with all its variables as statistically significant contributors.  
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Equation 15 
L TU Daphnia, L WPHL and L HHL 

Count Ratio of Effect =  [1.0436 + (0.1035 * L TU Daphnia) + (-0.0580 * L WPHL) + (-

0.1301 * L HHL)] 

3.2.5    Summary of Crustacea Species Modelling Results  

The best crustacea species count ratio of effect models are able to account for between 48 to 65 

percent of the variance observed in the proportion of species affected by pesticide exposure. The 

model with the strongest predictive ability is from insecticide data that came from fish-free 

systems.  

Overall Daphnia TU is the better predictor of crustacea species results and best and TU alone 

models from fish-free systems have stronger predictive abilities compared to their counterparts 

derived from data that came from combined entries on fish present and fish-free experiments. 

Fish-free data produced better best approximating models for insecticides than all pesticides 

together; however the best approximating model from fish-present and fish-free systems data had 

the same predictive strength for insecticides only and all pesticides together.  

Hydrolysis half-life is the single most important fate parameter for modelling proportion of 

crustacea species affected. Kow or water photolysis half-life was included to better explain 

responses observed in systems treated with insecticides.  

Given that the most predictive models came from the fish-free insecticide data, new models using 

all available data (to maximise sample size) were generated using the variable of the best models, 

in order to estimate the proportion of crustacea species that will be affected at 0.01 * TU 

Daphnia. These new models included five additional insecticides (bendiocarb, carbaryl, 
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cyfluthrin, deltamethrin, fenthion) for modelling, thereby producing a model based on 16 

insecticides.  

Even though the best approximating models for insecticide models based on fish-free data seem 

to indicate L WPHL is a statistically significant contributor to model prediction; modelling with 

the much larger data set (N=49 vs. N = 24, and 11 insecticides vs. 16) revealed that this fate 

parameter was not statistically significant. Instead, the best model proved to be L TU Daphnia, 

log Kow and L HHL (adjusted R2 = 0.55; see Equation 16, see Figure 7), which had all of its 

variables considered as statistically significant contributors. 

Equation 16 
L TU Daphnia, log Kow and L HHL 

Count Ratio of Effect =  [0.7390 + (0.1165 * L TU Daphnia) + (0.0631 * log Kow) + (-

0.1685 * L HHL)] 

Low and high values or both low or high, or average values were paired for model input. The log 

Kow values used are 1.52, 6.6 and 4.06; and the L HHL values used are -0.17, 3.26 and 1.55. The 

only conditions under which the 0.01 * TU Daphnia threshold can be protective is hydrophilic (or 

intermediate hydrophobic) insecticides that are extremely resistant to hydrolysis (5% of species 

are predictive to be affected). However, if an insecticide contains the reverse characteristics 

(hydrophobic with a short HHL) then all crustacea species are predicted to be affected. The model 

also predicts an insecticide of intermediate hydrophobicity and a HHL of 16 hours can cause 63% 

of the crustacea species to be affected at 0.01 * TU Daphnia, while a highly hydrophobic 

insecticide that is resistant to hydrolysis can lead to 37% of the species being affected. An 

insecticide that is hydrophobic with a HHL of 35.5 days is predicted to affect 50.25% of the 
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crustacea species within a system.  

These results clearly show that a threshold level of 0.01 * TU Daphnia would not be protective 

enough of crustacea species in the aquatic environment against most insecticides.  

3.3  Modelling Cladocera Abundance Responses 

The abundance responses used for these analyses were those that were reported by the individual 

study authors at the order level (cladocera). The dependent variable was a log-transformed 

abundance change ratio (LAR) calculated by dividing the control by the post-treatment numbers 

to reflect decreases or assigning a fix value of one to the no effects.  

The data set consists of 56 entries from 21 studies reporting on 20 pesticides – the fungicide 

(carbendazim); four herbicides (atrazine, glufosinate-ammonium, hexazinone, metsulfuron-

methyl) and 15 insecticides (azinphos-methyl, carbaryl, chlorpyrifos, cypermethrin, deltamethrin, 

diflubenzuron, esfenvalerate, fenvalerate, lambda-cyhalothrin, lindane, methoxychlor, 

permethrin, pyridaben, tebufenozide, temephos). Data were modelled from all pesticides 

combined (AP) and insecticides alone (IA).   

The validation set is based on the herbicides hexazinone and metsulfuron, along with the 

insecticides azinphos-methyl, chlorpyrifos, cypermethrin, deltamethrin, diflubenzuron, 

esfenvalerate, fenvalerate, lambda-cyhalothrin, lindane, methoxychlor, permethrin, pyridaben, 

tebufenozide and temephos; and the fungicide carbendazim.  

3.3.1    Models based on All Pesticides Data 

Of the 95 possible models with a TU and uncorrelated variables, ten have an AICc difference of 

less than two, thereby having enough evidence to support the claim of being the best 
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approximating models (see Table 6). All ten models are statistically significant, contain HC-5 

TU, and were statistically validated using the independent dataset. The models account for 31 – 

34% of the variance seen in the cladocera effects.  

The AIC scores show that there is less evidence to support L TU Daphnia (adjusted R2 = 0.19, see 

Equation 17) or L TU HC5-C (adjusted R2 = 0.25, see Equation 18) being considered as a best 

approximating model; however these models are statistically significant.  

Equation 17 

L TU Daphnia 

LAR  = [1.3888 + (0.3277 * L TU Daphnia)] 

Equation 18 
L TU HC5-C  

LAR  = [0.4751 + (0.142 * L TU HC5-C)] 

Four of the ten best approximate models contain WPHL and it is statistically significant in three. 

Kow is a statistically significant factor in all of the three models that it was included in; however 

Koc is not considered a statistically significant factor in any of its respective models. The models 

indicate that as WPHL increases so will the effect seen on cladocera; while fewer effects will be 

seen as Kow increases.  

Structural property of the system - volume and TSA/V R - , AAB, and HHL, though present in 

many of the models, were not considered to be statistically significant contributors to model 

prediction.  

The results show that HC5-C TU is better than Daphnia TU and Kow is an important physico-
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chemical property for predicting effects on cladocera.  WPHL and AAB appear in many of the 

best approximate models however their contribution is minimal. The only model that has all of its 

variables considered as statistically significant contributors is L TU HC5-C and log Kow. So 

given this factor and the small range in predictive power of the models, this model can be 

considered the best for the data set. The adjusted R2 for this model is 0.33 and the actual model 

equation is as follows: 

Equation 19 
LAR  = [1.1711 + (0.5310 * L TU HC5-C) + (-0.1406 * log Kow)] 

 

3.3.2    Models based on All Pesticides Data from Fish-Free Systems 

Data from fish-free systems were modelled in order to investigate whether having fish within the 

system influences the results and therefore the predictive ability of the models. The AIC analysis 

was done using the previously outlined criteria, except this time only with data from fish-free 

systems. This data sample contains 43 entries from 14 studies covering 13 pesticides – 

carbendazim, three herbicides (glufosinate-ammonium, hexazinone, metsulfuron methyl) and 

nine insecticides (carbaryl, chlorpyrifos, cypermethrin, diflubenzuron, esfenvalerate, fenvalerate, 

lambda-cyhalothrin, methoxychlor, permethrin). 

The validation set is made up of two herbicides (hexazinone, metsulfuron methyl) and ten 

insecticides (chlorpyrifos, cypermethrin, deltamethrin, esfenvalerate, fenvalerate, lambda-

cyhalothrin, lindane, methoxychlor, permethrin, temephos).   

Of the 96 possible models with a TU and uncorrelated variables, five are indicated by the AICc 

difference as being the best approximating models (see Table 7). All five models are statistically 
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significant and statistically validated using the independent dataset. They are able to explain 48 to 

51% of the variance seen in the changes of cladocera, clearly higher than the performance 

obtained with all studies combined.  

Even though the L TU HC5-C model (adjusted R2 = 0.41, see Equation 20) and L TU Daphnia 

(adjusted R2 = 0.32, see Equation 21) models are statistically significant and can be validated 

with an independent dataset, they were not considered as being among the best approximating 

models by the AICc scores.  

Equation 20 
L TU HC5-C 

LAR  = [0.4751 + (0.142 * L TU HC5-C)] 

Equation 21 
L TU Daphnia  

LAR  = [1.5537 + (0.3810 * L TU Daphnia)] 

All five models are based on TU HC5-C and four have Kow, which is a statistically significant 

contributing factor for three of the four models. Two of the five models include AAB, but it is 

only statistically significant for one. As Kow or AAB increase, less cladocera effects are 

expected. The best approximating model that includes both Kow and AAB as predictor variables, 

indicate that neither of them is a statistically significant contributing factor. While volume and its 

statistically negatively correlated counterpart TSA/V R are considered as insignificant 

contributors to their respective models.  

The results indicate that the HC5-C TU is better than the Daphnia TU for modelling cladocera 

responses to pesticide treatments. In addition, hydrophobicity is an important fate variable; 
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hydrophilic pesticides are expected to reduce cladocera populations.  L TU HC5-C and log Kow 

(adjusted R2 = 0.51, see Equation 22) model, which has both variables as statistically significant 

contributors, is considered to be the best by AICs scores for this dataset (all pesticides from 

systems without fish).  

Equation 22 
L TU HC5-C and log Kow 

LAR  = [1.1662 + (0.6063 * L TU HC5-C) + (-0.1356 * log Kow)] 

 

3.3.3    Models based on Insecticides Data 

Modelling insecticide data separately produced 96 models with a TU and no correlated variables, 

five of which are considered by AICc difference as having enough evidence to be the best 

approximating model for the data (see Table 8). These models explain between 25 to 27 percent 

of the variance seen in cladocera effects, which is less predictive than models based on grouping 

all pesticide data together. Even though these models were statistically significant, none could be 

validated using the independent dataset - the predicted results failed to show any correlations with 

the observed study impacts. This may have occurred partially due to small sample size. 

The L TU Daphnia model (adjusted R2 = 0.09) provides a really poor fit for cladocera abundance 

response to insecticide exposure, while the L TU HC5-C model (adjusted R2 = 0.15, see Equation 

23) though statistically significant did not have enough evidence to support it being considered as 

one of the best approximating models.  

Equation 23 
L TU HC5-C 

LAR  = [0.4751 + (0.142 * L TU HC5-C)] 
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All five of these models are based on HC5-C TU and had WPHL; the latter is a statistically 

significant contributor in four of the five models. As photolysis half-life increases, the effects on 

cladocera seen are expected to increase. However, volume, TSA/V R, Koc and HHL while all 

being included in at least one of the best approximating models were considered to be 

insignificant contributors.  

The results indicate that the HC5-C TU is better than the Daphnia TU and WPHL is an important 

fate variable for predicting reductions in cladocera abundance caused by insecticides. The only 

model that has all of its variables considered as statistically significant contributors is L TU HC5-

C and L WPHL (adjusted R2 = 0.27, see Equation 24), which was selected by the AICc as the 

most likely best model. There is no strong evidence against this model being considered the best 

for this data set.  

Equation 24 
L TU HC5-C and L WPHL 

LAR  = [-0.1494 + (0.6322 * L TU HC5-C) + (0.4103 * L WPHL)] 

 

3.3.4    Models based on Insecticides Data from Fish-Free Systems 

Modelling insecticide data was done using entries that came only from fish free systems. The 

AICc difference indicates that of the 96 models possible that have a TU and no correlating 

variables, eight can be considered as the best for these data (see Table 9). All of these models are 

statistically significant and they can explain 42 – 49% of the variance in cladocera abundance 

response. This is twice as better as the models generated based on insecticide data from both fish-

free and fish-present systems.  
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Four models were statistically validated with an independent dataset, regardless of the number of 

the validation sample: only data from that contained entries that had all of its fate, physico-

chemical, respective TUs and system structural properties, and a data set that was only modified 

according to the parameters present in the model.  

Half of the eight best approximating models are based on the HC5-C TU and the other half 

Daphnia TU. The model that used HC5-C TU as the sole predictor was among these eight 

models, and was selected by the AICc difference as the most likely model; however this model 

could not be validated with an independent data set.  

L TU Daphnia model (adjusted R2 = 0.25, see Equation 25) while statistically significant, was not 

considered as having enough evidence to be among the best approximating models. However, the 

L TU HC5-C (adjusted R2 = 0.44, see Equation 26) model based on the principle of parsimony 

can be considered as one of the best models for predicting cladocera responses to insecticide 

exposure.  

Equation 25 
L TU Daphnia 

LAR  = [1.4904 + (0.42 * L TU Daphnia)] 

Equation 26 
L TU HC5-C 

LAR  = [0.1512 + (0.7471 * L TU HC5-C)] 

WPHL is present in five models and Kow in four. Koc, TSA/V R and volume were present in at 

least one of the eight best approximating models, however none is considered as statistically 

significant contributors. According to the regression equations, as WPHL increases, fewer 
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reductions should be seen in cladocera abundance. This prediction is not only counter-intuitive, 

but also the opposite of what is expected when WPHL when the model was generated based on 

insecticides only but from both fish-present and fish-free systems.  

The results do not clearly indicate which of the two TUs – Daphnia or HC5-C – is better, 

however WPHL seems to be an important fate parameter in predicting effects on cladocera 

abundance. As previously mentioned, the influence of WPHL (like that of other loss rates in 

crustacea species analyses) seems counter-intuitive; the shorter half-lives contribute to reduced 

cladocera abundance. In addition to having both of its predictor variables as statistically 

significant contributors, L TU Daphnia and L WPHL (adjusted R2 = 0.44, see Equation 27) was 

the only model to be statistically validated with the both independent data sets; and can be 

considered as one of the best models for predicting cladocera abundance response to insecticide 

exposure.  

Equation 27 
L TU Daphnia and L WPHL 

LAR  = [2.1802 + (0.5739 * L TU Daphnia) + (-0.6884 * L WPHL)] 

 

3.3.5    Summary of Cladocera Modelling Results  

Best models for cladocera data can account for 27 to 51 percent of variance caused by pesticide 

exposure and the model with the greatest predictive power is based on all pesticides from fish-

free systems. The least predictive best model is based on insecticide data that came from both 

fish-present and fish-free systems, and the better models came from fish-free systems. Generally, 

models were more predictive when all pesticide data on cladocera were pooled together. Overall 

HC5-C TU is the better TU predictor variable for responses of cladocera abundance to pesticide 
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exposure.  

In order to estimate the impacts a concentration of 0.1 * TU HC5-C or 0.01 TU Daphnia would 

have on cladocera populations, the best fish-free models were generated with all available data 

from fish-free systems. Both insecticides alone and all pesticides models were done because 

cladocera is sensitive to the former group (Mohlenberg et al., 2001), but it was the latter group 

that had the strongest predictive model. 

 Upon modelling the best model based on all pesticides it was found that the Kow which was 

statistically significant with the more constrained dataset (N = 28), was no longer a statistically 

significant contributor, and the model predictive strength plummeted to an adjusted R2 of 0.35. 

The L TU HC5-C and L WPHL (adjusted R2 = 0.55, see Equation 28) model based on fish-free 

insecticide data gave a higher predictive power than its Daphnia counterpart, and the L WPHL 

which was not considered a statistically significant contributor to the model prediction under the 

constrained dataset (N = 20), was now considered as statistically significant in the expanded 

dataset (N= 48). Consequently, this model was selected to estimate the expected impacts of 

insecticides on cladocera abundance at 0.1 * TU HC5-C using the lowest (-1.9031), highest 

(3.0394) and average (1.0680) values for L WPHL based on the database.  

Equation 28 
L TU HC5-C and L WPHL 

LAR  = [0.7474 + (0.5507 * L TU HC5-C) + (-0.4219 * L WPHL)] 

The results show that insecticides that have a water photolysis half life of more than 12 days will 

not decrease cladocera abundance at concentrations that are 0.1 * TU HC5-C. However those 

pesticides that undergo rapid water photolysis degradation (e.g., 7 hours) can cause a 74% 
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reduction in abundance. If a threshold of 1 * TU HC5-C was used to protect cladocera, it would 

prove to be inadequate since about 50% loss is expected with an insecticide with a water 

photolysis half-life of 12 days. But, insecticides that are resistant to water photolysis break down 

are not predicted to have an impact.  

These results indicate that a threshold level of 1 * TU HC5-C would not be protective but 0.1 * 

TU HC5-C would be protective of the aquatic environment against insecticides that are not 

resistant to water photolysis.   

3.4  Modelling Copepoda Abundance Responses 

The abundance responses used for these analyses were those reported by the individual study 

authors at the sub-class level (copepoda). The dependent variable was a log-transformed 

abundance change ratio (LAR) which was calculated by dividing the control numbers by the post-

treatment numbers to reflect decreases and a fix value of one was assigned to the no effects.  

The 66 entries available for modelling were collected from 22 studies and reported on 20 

pesticides – the fungicide (carbendazim), four herbicides (atrazine, glufosinate-ammonium, 

hexazinone, metsulfuron-methyl) and 15 insecticides (carbaryl, chlorpyrifos, cypermethrin, 

deltamethrin, diflubenzuron, esfenvalerate, fenthion, fenvalerate, lambda-cyhalothrin, lindane, 

methoxychlor, methyl-parathion, pyridaben, tebufenozide, temephos).  The validation set consists 

of entries from the herbicides metsulfuron-methyl, hexazinone and metsulfuron; the insecticides 

chlorpyrifos, cypermethrin, deltamethrin, diflubenzuron, lambda-cyhalothrin, lindane, 

methoxychlor, methyl parathion, pyridaben, tebufenozide and temephos; and the fungicide 

carbendazim.  
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3.4.1    Models based on All Pesticides Data 

Of the 96 possible models with a TU and uncorrelated variables, three can be considered as the 

best approximating models based on AICc difference of less than two (see Table 10). All three 

models are statistically significant and can be statistically validated using the independent dataset. 

The models are able to explain 36 to 38% of the variance seen in the changes of copepoda 

abundance.  

The first two less approximating model will be included in the analysis because they provide 

further evidence to support trends seen in the best approximating models. Neither the L TU HC5-

C (adjusted R2 = 0.20; see Equation 29) nor L TU Daphnia (adjusted R2 = 0.14, see Equation 30) 

model could best predict the responses observed in copepoda upon exposure to pesticides.  

Equation 29 
L TU HC5-C 

LAR  = [0.4751 + (0.142 * L TU HC5-C)] 

Equation 30 
L TU Daphnia  

LAR  = [0.9290 + (0.19797 * L TU Daphnia)] 

All the models in consideration – best approximating and first two less approximating – have 

HC5-C as the predictor TU; and include Kow as a statistically significant contributing factor. 

More hydrophilic pesticides are predicted to have fewer effects on copepoda populations. 

Four of the five models in consideration include a structural property; three contain volume and 

one TSA/V R. The former variable is a statistically significant contributor to its respective 

models, however the latter is not. Increased volumes or decreased TSA/V R are expected to 
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contribute to fewer effects. Neither HHL nor AAB is a statistically significant contributor.  

The results suggest that HC5-C is the better TU predictor and that Kow is an important fate 

parameter when predicting the effects of pesticides on copepoda abundance. The volume of the 

system is also essential for such predictive purposes. L Volume, L TU HC5-C and log Kow 

(adjusted R2 = 0.38, see Equation 31) was the only best approximating model with all of its 

predictor variables being considered statistically significant contributors below p=0.05; and since 

there is no strong evidence to suggest that there is a better model for the data, it can be considered 

as the best. 

Equation 31 
L Volume, L TU HC5-C and log Kow 

LAR  = [1.2398 + (-0.2370 * L Volume) + (0.5310 * L TU HC5-C)  

+ (-0.1406 * log Kow)] 

 

3.4.2    Models based on All Pesticides Data from Fish-Free Systems 

To check whether fish within the system influenced the results and therefore the predictive ability 

of the models, a separate AIC table was generated with data from fish-free systems. This data 

sample contains 50 entries from 15 studies covering 15 pesticides – the fungicide (carbendazim); 

three herbicides (glufosinate-ammonium, hexazinone, metsulfuron methyl) and 11 insecticides 

(carbaryl, chlorpyrifos, cypermethrin, deltamethrin, esfenvalerate, fenthion, fenvalerate, lambda-

cyhalothrin, lindane, methoxychlor, temephos). 

The validation set consists of three herbicides (glufosinate-ammonium, hexazinone, metsulfuron 

methyl); eight insecticides (chlorpyrifos, cypermethrin, deltamethrin, esfenvalerate, lambda-
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cyhalothrin, lindane, methoxychlor, temephos); and the fungicide carbendazim.  

Ninety-six models with a TU and uncorrelated variables were possible, six of which have an 

AICc difference of less than two (see Table 11). All six models are statistically significant and 

were statistically validated using the independent dataset. These best approximating models are 

able to explain 42 to 53% of the variance seen in the changes in copepoda abundance. Overall, 

this is slightly better predictive strengths than the models for all pesticides based on data from 

both fish-present and fish-free systems.  

The L TU HC5-C (adjusted R2 = 0.25, see Equation 32) and L TU Daphnia TU (adjusted R2 = 

0.31, see Equation 33) models were not considered as being among the best approximating 

models by the AICc scores.  

Equation 32 
L TU HC5-C 

LAR  = [0.4751 + (0.142 * L TU HC5-C)] 

Equation 33 
L TU Daphnia TU - 

LAR  = [1.1472 + (0.2519 * L TU Daphnia)] 

All five best approximating models include TU HC5-C and Kow as statistically significant 

contributing factors. AAB, ASB, volume and TSA/V R though included in at least one of the best 

approximating models are not statistically significant contributing factors to their respective 

models. Greater copepoda reductions are expected with more hydrophilic pesticides. 

The results indicate that the HC5-C TU is better than the Daphnia TU and Kow is an important 

fate variable for predicting copepoda responses to pesticide treatments. The L TU HC5-C and log 
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Kow model (adjusted R2 = 0.43, see Equation 34), which was selected by the AIC scores as being 

the best model for these data, is the only best approximating model with all of its variables as 

statistically significant contributors. Given this and the close predictive abilities of the other 

models, this model can be considered at the best model for the data.  

Equation 34 
L TU HC5-C and log Kow 

LAR  = [1.0675 + (0.4541 * L TU HC5-C) + (-0.1425 * log Kow)] 

 

3.4.3    Models based on Insecticides Data  

Modelling insecticide data separately produced 96 models without correlated variables and a TU; 

five are considered by AICc difference as having enough evidence to be the best approximating 

model for the data (see Table 12). All five models are statistically significant and were 

statistically validated using the independent dataset. These best approximate models explain 

between 36 to 42 percent of the variance seen in copepoda responses, this level of predictive 

strength is similar to that of models based all pesticides from both fish-free and fish-present 

systems.  

Though statistically significant, the L TU HC5-C (adjusted R2 = 0.26, see Equation 35) or the L 

TU Daphnia (adjusted R2 = 0.13, see Equation 36) model is not among the best approximating 

models for predicting copepoda abundance responses to insecticide exposure.  

Equation 35 
L TU HC5-C 

LAR  = [0.4751 + (0.142 * L TU HC5-C)] 
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Equation 36 
L TU Daphnia  

LAR  = [0.8649 + (0.2337 * L TU Daphnia)] 

All five models are based on the HC5-C TU and have a structural system property as a predictive 

variable. Three models include volume and the other two have TSA/V R; both parameters are 

statistically significant contributors to their respective models.  More abundance reductions are 

expected when TSA/V R increases or volume decreases.  

WPHL is included in four of the best approximating models; however it is only statistically 

significant in two models. It should be noted that these four models all have an adjusted 

coefficient of determination of 0.42 and the sole model without WPHL has a six percent points 

decrease in model predictability. More copepoda reductions are expected with increased WPHL. 

Two models contain Koc, however it is not a statistically significant contributor to either of the 

model.  

The results show that the HC5-C is a better predictor than Daphnia TU, and WPHL is an 

important fate parameter for modelling. The structural property of the system appears to influence 

insecticide toxicity. In light of these results the L TSA/V R, TU L HC5-C and L WPHL (adjusted 

R2 = 0.42, see Equation 37) and L Volume L HC5-C and L WPHL (adjusted R2 = 0.42, see 

Equation 38) models can vie to be the best for the dataset.  

Equation 37 
L TSA/V R, TU L HC5-C and L WPHL 

LAR  = [-0.5340 + (0.9487 * L TSA/V R) + (0.3805 * L TU HC5-C)  

+ (0.1976 * L WPHL)] 
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Equation 38 
L Volume, L HC5-C and L WPHL 

LAR  = [0.2214 + (-0.2937 * L Volume) + (0.4141 * L TU HC5-C)  

+ (0.1894 * L WPHL)] 

 

3.4.4  Models based on Insecticides Data from Fish-Free Systems 

Like, with all pesticide data, modelling only insecticide data was also done using entries that 

come from fish free systems. The AICc difference indicated that of the 96 models possible that 

have a TU and no correlating variables, four contend as being the best for this data (see Table 13). 

All of these models were statistically significant, however only three could be validated with an 

independent dataset. These four best approximating models can explain 62 – 64% of the variance 

in copepoda responses to insecticide exposure, which is clearly better than the models based on 

insecticide data from both fish-free and fish-present systems and all pesticides grouped together.  

The L TU HC5-C (adjusted R2 = 0.40, see Equation 39) and L TU Daphnia TU (adjusted R2 = 

0.24, see Equation 40) models are not considered to be among the best approximating models by 

the AICc scores.  

Equation 39 
L TU HC5-C 

LAR  = [0.4751 + (0.142 * L TU HC5-C)] 

Equation 40 
L TU Daphnia TU  

LAR  = [1.1007 + (0.2649 * L TU Daphnia)] 

All four models are based on HC5-C TU and include AAB as a statistically significant 
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contributing factor. More reductions in copepoda abundance are expected with longer AAB half-

lives. WPHL, volume and TSA/V R are considered statistically insignificant contributors to their 

respective models.  

The results from these analyses reveal that HC5-C TU is a better predictor for effects on 

copepoda abundance. It also appears that AAB is an important fate parameter when predicting the 

effects that insecticides from fish free systems would have on copepoda abundance. The evidence 

seems to support the L TU HC5-C and L AAB (adjusted R2 = 0.63, see Equation 41) model being 

the best approximate for this data.  

Equation 41 
L TU HC5-C and L AAB 

LAR  = [-2.2353  + (0.6638 * L TU HC5-C) + (1.3257 * L AAB)] 

 

3.4.5    Summary of Copepoda Modelling Results  

The best models for copepoda data can account for 38 to 63 percent of variance observed in the 

experiments. Similar to crustacea species, the best model with the highest predictive power 

originated from insecticides from fish-free systems. The least predictive model is based on all 

pesticides from fish-present and fish-free systems. In general, the better models came from fish-

free systems and models were more predictive when data came strictly from insecticide 

treatments.  

The HC5-C TU is the better predictor TU variable for responses of copepoda abundance to 

pesticide exposure. Best models based on all pesticides included Kow, and when these data came 

from combined both fish-present and fish-free entries, systems volume proved to be an important 
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variable. For the best insecticide models based on data that combined entries from systems both 

with and without fish, water photolysis coupled with surface area to volume ratio or volume, are 

best. But for insecticide models based on fish-free systems aquatic aerobic biotransformation is 

the only other variable required for the best model. 

To estimate the likely impacts of 0.1 * TU HC5-C on copepod abundance, the best model was 

selected – L TU HC5-C and L AAB from fish-free insecticide data and remodelled using all 

available fish-free insecticide data, partially because of small sample size. The new L TU HC5-C 

and L AAB (adjusted R2 = 0.62; see Equation 42) model had two additional insecticides 

(azinphos-methyl; methyl-parathion) and twice as many entries (N = 44).   The lowest, highest 

and average values for L AAB (0.56, 2.31, 1.43 respectively) based on the database were placed 

into the model equation.  

Equation 42 
L TU HC5-C and L AAB 

LAR  = [-1.2931 + (0.5788 * L TU HC5-C) + (0.8244 * L AAB)] 

The results show that insecticides at 0.1 * TU HC-5 C concentration with an aerobic aquatic 

biotransformation half-life of less than 27 days will not decrease copepoda abundance. However, 

insecticides that are resistant to aerobic aquatic biotransformation are predicted to cause a 19% 

reduction. The newer L TU HC5-C and L AAB (Equation 42) model also predicts that at the 

HC5-C TU concentration copepods are not likely to incur any impacts if exposed to an insecticide 

with an aerobic aquatic biotransformation half-life of less than 27 days. However, a 79% decrease 

is expected if the insecticide is resistant to aerobic aquatic biotransformation.  

These results indicate that a threshold level of 0.1 * TU HC5-C or 1 * TU HC5-C would be 
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protective of the aquatic environment against insecticides that are not resistant to anaerobic 

aquatic biotransformation.  

3.5  Discussion 

The results show that crustacea laboratory single species toxicity data as geometric means of 

Daphnia species (Daphnia) or in the form of a Hazard Concentration for five percent of crustacea 

species (HC5-C) are able to produce statistically significant models capable of predicting field 

effects of pesticide exposure on crustacea abundance within lentic systems. The best models are 

based on the toxic units derived from these single species laboratory toxicity data (TU Daphnia 

and TU HC5-C) alone and/or in conjunction with other predictor variables such as fate, physico-

chemical and system properties. All the proposed best models for crustacea species, cladocera 

and copepoda effects were validated using an independent dataset. Crustacea species produced 

the most predictive models, followed by copepoda. However, cladocera models were less 

predictive and showed inconsistency in terms of the influence of fate parameters on the toxic 

effects seen. This was probably due to small sample size.  

3.5.1  Pesticide Grouping 

It is expected that insecticides data should yield better models for crustacea, since these 

organisms are sensitive to the specific modes of action of these pesticides. In fact, Brock et al. 

(2000) found that insects and crustaceans are the most sensitive groups in insecticide treatments. 

However, the cladocera and to a lesser extent crustacea species models were generally more 

predictive with data from all pesticides while copepoda models were better when the came from 

insecticide only data, even though insecticides account for about 75% of the pesticides in all three 

crustacean taxonomic groupings (crustacea species, cladocera, copepoda) and the actual pesticide 
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composition is similar among these sub-data sets. However, it must be noted that the best models 

based on larger sample sizes were all from insecticide only data from fish-free systems.  

However, the data from fish-free and fish-present systems combined produced models of similar 

predictability, with the best models based on insecticide or all pesticides grouped together having 

less than five percent difference in predictive power.  

Competition and other biological factors such as feeding habits may explain why copepoda data 

produce better models when restricted to insecticides. While some members of these two groups 

generally feed at the same level, the majority of cladocera are unselective filter-feeders, while 

copepoda tend to actively select their food with a preference for larger particles (Becker et al., 

2004; Brandl, 2005). Consequently, it is possible that they would respond differently to the 

different types of pesticides, since herbicides are not directly toxic to crustaceans.  

The models in the current study are based on single species laboratory data done using 

standardised tests which do not reflect natural aquatic ecosystem conditions, extrapolations to 

selective feeders may be more accurate than to filter feeders that probably ingest more pesticides 

from feeding than their copepoda relatives. This is in part supported by the fact that the best 

copepoda models are substantially more predictive than those of cladocera. However, it does not 

explain why the best copepod models had about the same predictive strength as the best 

crustacean species models, in light of the fact that the majority of species used to derive that 

model belong to the order cladocera. But it must be noted that the crustacea species responses 

were quantified using a species count ratio of effect, while the copepoda used an abundance effect 

ratio.  



 

NAESI Technical Series No. 3-31 
Page 69 

3.5.2 Presence of Fish  

The most predictive best models come from fish-free insecticide systems while the least 

predictive are based on data that grouped fish-present and fish-free systems. It appears that the 

presence of fish causes secondary effects that greatly distort the effects seen, and consequently 

explaining the variance observed becomes more difficult. In fact, the coefficients of 

determination for the best models are better by 10 to 20% in those models derived from data 

without fish. These results seem to support the recommendation of the workshop on Community 

Level Aquatic System Studies – Interpretation Criteria (CLASSIC) held during May –June, 1999 

in Germany - fish should not be included in a micro- or meso- cosm study if effects on 

invertebrates are important endpoints.  

An interesting finding in our study is that the best copepod models required the use of a structural 

property of the system (volume or surface area to volume ratio) if the data grouped entries from 

fish-present and fish-free systems; however if the data came only from fish-free systems no 

structural property was needed. The results also indicate that more effects are expected in smaller 

system or those with larger surface area to volume ratio (which is usually associated with smaller 

systems). An examination of the experiments used for modelling show that fish are generally only 

present in the larger systems. This tendency was also found by Belanger (1997) who analysed 

data from over 150 model stream ecosystems. However, it seems as though the fish may be 

causing secondary effects which are more pronounced in the smaller systems. It is also quite 

possible that the smaller systems have more fish biomass per area than the larger ones, and this 

therefore enhances secondary effects caused by fish.           
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3.5.3 HC5c vs Daphnia TU 

It was hypothesised that the HC5 would have been the better predictor since it is made up of 

various crustacea species, which should in turn reflect the range of toxicity sensitivities present in 

the real world. In essence, the HC5 is thought to help produce a laboratory based value that was 

more reflective of an ecosystem.  While the results from the cladocera and copepoda show that 

HC5 for crustacea is the better toxicity predictor, the best models for effects at the species level 

(i.e., proportion of species affected) indicate that the Daphnia toxicity unit is better suited for this 

type of data. However, the crustacea species models based solely on the toxic units as predictor 

variables have approximately the same predictive strength. This scenario is likely due to the 

strong correlation between these two toxicity units.  

It is no surprise that the hazard concentration toxicity unit based on crustacea is better for 

copepoda since it is less taxonomically related to Daphnia; while cladocera models’ preference 

for this predictor variable may be caused by hazard concentration values being extrapolated from 

species sensitivity distributions which were comprised of many cladocerans. However, if this 

hold true it does not explain why crustacea species models preferred the hazard concentration 

toxicity unit based on crustacea species, given that 65% of the species used to get the count ratio 

of effect are from the order cladocera.  

It must be noted that the dataset used for modelling crustacea species effects included responses 

of Daphnia species; so this may possibly explain why the crustacea species best models preferred 

Daphnia based toxicity unit.  However, the preference of toxicity unit predictor variable may be 

better explained by the fact that the dependent variable for crustacea species differed from that 

used for predicting cladocera or copepoda abundance (both preferred HC5-C). Scatterplots of the 
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HC5 for crustacea toxicity units versus effect ratio (see Appendix I) and Daphnia toxicity unit 

versus species count ratio of effect ratio (see Appendix J), reveal that the former is much more 

scattered since it covers a larger range of toxicity units than the latter.  While visual inspection of 

the distribution of HC5 for crustacea and Daphnia toxicity units against abundance ratio of 

response, show no major differences.  

3.5.4 Fate, physico-chemical and Structural Properties of the System 

Addition of fate, physico-chemical or structural system property variables improved model 

prediction for all crustacea groups, with the sole exception of models based on insecticides from 

fish-free systems for cladocera (note that the sample size was quite small). The degree of 

improvement by addition of such variables varied tremendously from merely a few percent better 

to twice better.  

Hydrolysis half-life is the single most important fate parameter for crustacea species regardless of 

the dataset used (insecticides or all pesticides and their fish-free counterparts). The models 

indicate that more effects are expected from those chemicals that have lower hydrolysis half-

lives; which is somewhat counter-intuitive since it is expected that pesticides that are more 

persistent will lead to higher toxicity. It is possible that pesticides degrade into compounds that 

are more toxic than the parent material and some pesticides (like organothiophosphates, which 

were well-represented in the dataset used for modelling) need to be transformed to be toxic. But 

unfortunately the former hypothesis has generally been under-researched and there are studies 

reporting that several organophosphorus pesticides degrade into compounds that are more, less or 

similar to the parent in terms of its toxicity (Pehkonen and Zhang, 2002). So in order to test 

whether direct or metabolite-mediated toxicity may have contributed to the results indicated in 
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the models, modelling was re-done using the variables of the best models but instead by grouping 

the insecticide data according to whether they needed to be transformed or were directly toxic. 

The models for both groups resulted in insecticides with shorter hydrolysis half-lives leading to 

more effects, thereby not supporting the hypothesis that that metabolite toxicity played a role in 

the impacts seen.  

About half the data used to generate the best crustacea species model came from 

organophosphorus (OPs) insecticides, however results obtained from models generated using the 

same variables but without the OPs showed that hydrolysis was still considered a statistically 

significant contributor and rapid hydrolysis was predicted to affect more crustacea species. 

Water photolysis half-life is included in the best cladocera models for data based on 1) all 

pesticides from systems with and without fish, 2) insecticides from systems with and without fish, 

and 3) insecticides from fish free-systems. The first two sets of data produced models that 

indicate longer water photolysis half-lives would give rise to more toxic effects, however the last 

set of data (which produced the best model) show that shorter water photolysis half-lives would 

reduce cladocera abundance. Approximately 38% of the data used to generate the best cladocera 

model were from pyrethroids, which had the shortest water photolysis half-lives in the entire 

dataset. However, models generated using the same variables and non-pyrethroids still resulted in 

photolysis half-life being considered statistically significant and rapid photolysis leading to 

higher reductions in cladocera abundance.  

Water photolysis half-life is also included in the best copepoda insecticide models from systems 

with and without fish, while Kow is included in the best models based on all pesticides. More 

copepoda reductions were predicted with longer water photolysis half-lives and hydrophilic 
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compounds. In addition, structural property of the system was included in the best models based 

on data from both fish-present and fish-free systems and it was indicated that effects were more in 

smaller systems. Since these structural parameters were coupled with hydrophilic pesticides and 

insecticides that are resistant to water photolysis degradation, it therefore it appears as though the 

smaller systems can result in fewer refugia for these water-dwelling organisms, which can 

exacerbate effect of persistent pesticides.  

However, the models based insecticide data from fish-free systems, which is the dataset that 

produced the best copepoda models, have aerobic aquatic biotransformation half-life as the best 

explanatory fate variable. More effects are predicted if the degradation time is longer, which is 

logical because the insecticide would spend a longer time within the system. However, the 

selection of aerobic aquatic biotransformation half-life as the best fate variable is of some interest 

because unlike the other fate parameters it can be considered the closest laboratory equivalent to a 

field half-life test given (it is done using both water and sediment).   

Hydrophobic insecticides contributed to more effects for crustacea species; however the best 

approximating models for cladocera and copepoda indicated that hydrophilic pesticides caused 

more effects.  Our crustacea species (made up of 65% cladocera and 25% copepoda species) 

results are similar to Mohlenberg et al. (2001) who found that hydrophobic insecticides increase 

the toxicity for cladocerans and copepods. Unfortunately, Kow (or Koc) when present was not 

statistically significant in the best approximating all pesticides crustacea species models and 

insecticide models for cladocera or copepoda. Even though Mohlenberg et al. (2001) used few 

insecticides for modelling (less than 11), with the exception of diazinon and bifenthrin, the rest of 

their insecticides are included in the dataset of our study; consequently similar effects on 
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cladocera and copepoda might be expected.  

In essence, these results reiterate the fact that the physico-chemical and fate properties of the 

pesticide, along with actual system characteristics and application method of the pesticide can 

greatly influence the toxic effects seen. Hydrolysis is affected by temperature and pH; photolysis 

can be accelerated or inhibited depending on depth and availability of sunlight; aerobic aquatic 

biotransformation is influenced by the physico-chemical properties of the system; and structural 

properties such as volume influences bioavailability of the pesticide. Consequently, using a tool 

that does not take into account these factors can severely underestimate the effects of worse case 

scenarios and result in poor predictability of effects overall.  

3.5.5 Conservativeness of Hazard Quotients 

Using the best models to draw conclusions about protective threshold concentrations revealed 

more effects are bound to occur at the standard Daphnia level (0.01 * Daphnia) than the L TU 

HC5-C threshold concentration with a safety factor of 10 (0.1 * HC5-C). This is hardly surprising 

since with the exception of a few pesticides (temephos, metribuzin and azinphos-methyl) all 

others used for modelling have 0.1 * HC5-C values that are between 1.28 (chlorpyrifos) and 246 

(lindane) times more sensitive than the 0.01 * Daphnia values.  

Our study shows about 50% of crustacea species can be affected by insecticide exposure at 

concentrations of 0.01 * Daphnia TU. These results directly contradict Brock et al. (2000a) who 

found that this threshold level is protective of insecticide impacts on the aquatic environment. 

The disparity may partially be caused by the method used to determine an effect. Our research did 

not discriminate between slight effects and transient effects versus clear effects; any statistical 

significant change attributable to the pesticide treatment regardless of duration was considered to 
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be an effect, especially since the study reports show that most effects are only considered as being 

statistically significant when there is a major change (usually more than 70%). In addition, some 

of the studies used in our research are done at lower concentrations, and they showed effects. 

Brock et al. (2000a) mentioned that one of the problems that they had in deriving a true NOEC 

was that studies were generally done at higher concentrations and some of the lowest 

concentrations they had showed clear effects (11 insecticides of 21).    

It is also extremely important to note that the models do not contain entries at extremely low toxic 

units such as 0.01 * Daphnia TU or 0.1 * HC5-C TU. So even though the predicted impacts at 

these concentrations are estimated from fairly strong models (adjusted R2 ≥ 0.55) there is an 

unknown amount of error associated with the extrapolation of impacts beyond the range of 

available data.  

Within their report Brock et al. (2000a) conclude based on limited data that the crustacean groups 

of cladocera and copepoda are not affected at 0.01 – 0.1 * TU Daphnia; there are many more 

studies showing clear negative effects at 0.1 – 1 * TU Daphnia following a single application of 

acetylcholinesterase-inhibiting insecticides increases dramatically. Eighty-three percent of these 

studies show effects for cladocera and 30% for copepoda. Even though a similar approach was 

used to calculate the toxicity units, examination of Brock et al. (2006) publication shows that the 

HC5 values varies between the two studies (theirs and ours). So this may in part explain the 

variation in results obtained.  

The best models for cladocera and copepoda generally support that a threshold value at 0.1 * 

HC5-C would be protective, with the major exception being insecticides that degrade rapidly by 

water photolysis (cladocera). In addition, insecticides that are extremely resistant to aerobic 
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aquatic biotransformation can possibly cause minor reductions in copepods (a maximum of 19%) 

according to extrapolations from the best fitting copepoda model. However, on average a 

threshold level of 1 * median HC5-C TU is predicted as being incapable of offering enough 

protection to cladocera, but this level can protect copepods that are not exposed to insecticides 

which are extremely resistant to aerobic aquatic biotransformation. This therefore does not 

confirm Maltby et al. (2005) claims that the lower limit (95% CI) value of HC5 is able to protect 

aquatic ecosystems; while the median (50% CI) HC5 is generally protective of these freshwater 

environments.   
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Table 2:  Model selection by AIC for Count Ratio of Effect for crustacea species based on all pesticides using both Daphnia and 
HC5c TUs, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Var 5 Df ∆ AICc wi ratio Adjuste
d R2 

L ratio 
Chi2 

p r 

.6886 * L TU Daphnia L HHL    2 0.00 1.00 0.48 36.45076 0.000000 
p=.000 
.6916 L Volume L TU 

Daphnia 
L WPHL LAAB  4 0.03 1.01 0.50 40.56890 0.000000 

p=.000 
.7010 L Volume L TU 

Daphnia 
L HHL   3 0.28 1.15 0.49 38.24190 0.000000 

p=.000 
.6956 L Volume L TU 

Daphnia 
LAAB   3 1.01 1.65 0.48 37.51622 0.000000 

p=.000 
.7044 L TSA/V R L TU 

Daphnia 
L HHL   3 1.17 1.79 0.48 37.35644 0.000000 

p=.000 
.6523 L Volume L TU 

Daphnia 
   2 1.19 1.81 0.47 35.26438 0.000000 

p=.001 
.6903 L Volume L TU 

Daphnia 
L WPHL L HHL  4 1.57 2.19 0.49 39.02737 0.000000 

p=.000 
.7097 L TU HC5 - C LAAB    2 1.57 2.19 0.47 34.88331 0.000000 
p=.000 
.7093 L Volume L TU 

Daphnia 
log Kow L HHL  4 1.61 2.24 0.49 38.98617 0.000000 

p=.000 
.6960 L Volume L TU 

Daphnia 
log Koc L WPHL LAAB 5 1.62 2.24 0.50 41.05880 0.000000 

p=.000 
.6919 L TU Daphnia log Kow L HHL   3 1.76 2.41 0.48 36.76292 0.000000 
p=.000 
.6841 L TU Daphnia L WPHL L HHL   3 1.94 2.64 0.47 36.58503 0.000000 
p=.000 
.7133 L TU HC5 – C L HHL    2 1.95 2.66 0.46 34.49847 0.000000 
p=.000 
.6088 
 

L TU Daphnia     1 2.56 3.60 0.45 31.82382 0.000000 
 

p=.002 



 

NAESI Technical Series No. 3-31 
Page 78 

Table 2:  Model selection by AIC for Count Ratio of Effect for crustacea species based on all pesticides using both Daphnia and 
HC5c TUs, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Var 5 Df ∆ AICc wi ratio Adjuste
d R2 

L ratio 
Chi2 

p r 

.6839 L TU HC5 - C     1 2.01 2.73 0.45 32.37372 0.000000 
p=.000 

N= 52 for training set, N = 24 for validation set. 

* proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

 wi ratio- Akaike’s weight ratio 

r – correlation coefficient  

LAAB – log-transformed aerobic aquatic biotransformation 

LHHL – log-transformed hydrolysis half-life 

LTSA/V R – log-transformed total surface area to volume ratio  

LTU Daphnia – log-transformed toxic unit based on geometric mean for 
Daphnia species 

L TU HC5 – C – log-transformed toxic unit based on hazard concentration 
for 5% of crustacea Species 

L Volume - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic carbon absorption coefficient 

log kow – log-transformed  octanol-water coefficient 
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Table 3:  Model selection by AIC for Count Ratio of Effect for crustacea species based on all pesticides from systems without 
fish using both Daphnia and HC5c TU, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Df ∆ AICc wi ratio Adjusted 
R2 

L ratio 
Chi2 

P r 

.6776 * L TU Daphnia  L HHL  2 0.00 1.00 0.57 34.38206 0.000000 
p=.000 
.6088 * L TU Daphnia    1 0.78 1.48 0.55 31.49877 0.000000 

p=.002 
.6387 L TU Daphnia  LAAB  2 1.28 1.90 0.56 33.10294 0.000000 

p=.001 
.6832 L TU Daphnia  log Kow L HHL 3 1.41 2.02 0.57 35.08227 0.000000 

p=.000 
.6831 L Volume L TU 

Daphnia 
L HHL 3 1.96 2.67 0.56 34.52676 0.000000 

p=.000 
.6839 L TU HC5 - C   1 3.91 7.07 0.51 28.36877 0.000000 

p=.000 
N= 52 for training set, N = 24 for validation set. 

* proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

 wi ratio- Akaike’s weight ratio 

r – correlation coefficient  

LAAB – log-transformed aerobic aquatic biotransformation 

LHHL – log-transformed hydrolysis half-life 

LTU Daphnia – log-transformed toxic unit based on geometric mean for 
Daphnia species 

L TU HC5 – C – log-transformed toxic unit based on hazard concentration 
for 5% of crustacea Species 

L Volume - log-transformed volume 

log kow – log-transformed  octanol-water coefficient 
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Table 4:  Model selection by AIC for Count Ratio of Effect for crustacea species based insecticides using both Daphnia and 
HC5c TUs, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Df ∆ AICc wi ratio Adjusted 
R2 L ratio Chi2 p r 

.6760 * L TU 
Daphnia 

log Kow L HHL  3 0.00 1.00 0.48 27.39866 0.000005 

p=.003 

.6659 L Volume L TU 
Daphnia 

log Kow L HHL 4 0.92 1.58 0.48 28.59695 0.000009 

p=.004 

.6773 L TSA/V R L TU 
Daphnia 

log Kow L HHL 4 2.09 2.84 0.46 27.42790 0.000016 

p=.003 

.6347 L Volume L TU 
Daphnia 

L HHL  3 3.93 7.15 0.42 23.46526 0.000032 

p=.006 

.6409 L TU Daphnia L HHL   2 4.02 7.45 0.40 21.27202 0.000024 

p=.006 

.6206 L TU Daphnia log Koc L HHL  3 4.19 8.12 0.42 23.21122 0.000036 

p=.008 

.6496 L TU HC5 - C log Kow L HHL  3 4.45 9.25 0.41 22.95010 0.000041 

p=.005 

.6132 L Volume L TU 
Daphnia 

log Koc L HHL 4 4.59 9.90 0.43 24.93014 0.000052 

p=.009 

.4214 L TU Daphnia    1 13.07 688.16 0.22 10.11766 0.001469 

p=.092 
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Table 4:  Model selection by AIC for Count Ratio of Effect for crustacea species based insecticides using both Daphnia and 
HC5c TUs, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Df ∆ AICc wi ratio Adjusted 
R2 L ratio Chi2 p r 

.5050 L TU HC5 - C    1 13.17 724.01 0.22 10.01611 0.001552 

p=.039 

N= 52 for training set, N = 17 for validation set. 

* proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

 wi ratio- Akaike’s weight ratio 

r – correlation coefficient  

LAAB – log-transformed aerobic aquatic biotransformation 

LHHL – log-transformed hydrolysis half-life 

LTSA/V R – log-transformed total surface area to volume ratio 

LTU Daphnia – log-transformed toxic unit based on geometric mean for 
Daphnia species 

L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 
5% of crustacea Species 

L Volume - log-transformed volume 

log Koc – log-transformed  organic carbon absorption coefficient 

log kow – log-transformed  octanol-water coefficient  
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Table 5:  Model selection by AIC for Count Ratio of Effect for crustacea species from insecticides from systems without fish 
using both Daphnia and HC5c TU, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Var 5 Df ∆ AICc wi ratio Adjuste
d R2 

L ratio 
Chi2 p r 

.6130 L TU Daphnia log Koc L WPHL L HHL  4 0.00 1.00 0.68 31.76399 0.000002 
p=.009 

.3949 L Volume L TU 
Daphnia 

log Koc L WPHL L HHL 5 1.49 2.11 0.67 32.52792 0.000005 
p=.117 
.6424 * L TU Daphnia L WPHL L HHL   3 1.08 1.71 0.65 28.45890 0.000003 

p=.005 
.6715 L TU Daphnia log Kow L HHL   3 1.65 2.29 0.64 27.88075 0.000004 
p=.003 
.6075 L TU Daphnia log Koc L HHL   3 2.01 2.73 0.63 27.52537 0.000005 
p=.010 
.4214 L TU Daphnia     1 12.92 12.92 0.37 12.22593 0.000471 
p=.092 
.5050 L TU HC5 - C     1 15.92 15.92 0.29 9.22304 0.002390 
p=.039 

N= 24 for training set, N = 13 for validation set. 

* proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference  wi ratio- Akaike’s weight ratio 

r – correlation coefficient  

LHHL – log-transformed hydrolysis half-life 

LTU Daphnia – log-transformed toxic unit based on geometric mean for Daphnia 
species 

L TU HC5 – C – log-transformed toxic unit based on hazard concentration 
for 5% of crustacea Species 

L Volume - log-transformed volume 
L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic carbon absorption coefficient 

log kow – log-transformed  octanol-water coefficient 



 

NAESI Technical Series No. 3-31 
Page 83 

Table 6:  Model selection by AIC for Log Abundance Ratio Change for cladocera for all pesticides using both Daphnia and 
HC5c TUs, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Df ∆ 
AICc 

Akaike 
weight 
ratio 

Adjust
ed R2 

L ratio 
Chi2 

p r N r 
(N=20) 

.4164 .4721 L TU HC5 - C L WPHL LAAB  3 0.00 1.00 0.34 18.43268 0.000358 

p=.038 

25 

p=.036 

.4513 .4936 * L TU HC5 - C log Kow   2 0.03 1.02 0.33 16.28399 0.000291 

p=.024 

25 

p=.027 

.4398 .5151 L Volume L TU 
HC5 - C 

log Kow  3 1.06 1.70 0.32 17.37002 0.000593 

p=.028 

25 

p=.020 

.4780 .5360 L TU HC5 - C log Koc   2 1.05 1.69 0.31 15.26603 0.000484 

p=.024 

22 

p=.015 

.4674 .5031 L Volume L TU 
HC5 - C 

L WPHL LAAB 4 1.43 2.05 0.34 19.12012 0.000744 

p=.028 

22 

p=.024 

.5123 .5123 L TU HC5 - C log Koc L WPHL LAAB 4 1.54 2.16 0.33 19.01030 0.000782 

p=.021 

20 

p=.021 

.4179 .4812 L TSA/V R L TU 
HC5 - C 

log Kow  3 1.45 2.07 0.32 16.98058 0.000713 

p=.038 

25 

p=.032 

.4860 .4860 L TSA/V R L TU 
HC5 - C 

L WPHL LAAB 4 1.75 2.40 0.33 18.80044 0.000860 

p=.030 

20 

p=.030 

.4271 .4970 L TU HC5 - C log Koc LAAB  3 1.79 2.45 0.31 16.63843 0.000839 

p=.033 

25 

p=.026 

.4534 .4897 L TU HC5 - C log Kow L HHL  3 1.98 2.69 0.31 16.45327 0.000915 

p=.023 

25 

p=.028 

.4734 .5094 L TU HC5 - C    1 2.7344 3.92 0.19 11.47753 0.000704 

p=.017 

25 

p=.022 
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Table 6:  Model selection by AIC for Log Abundance Ratio Change for cladocera for all pesticides using both Daphnia and 
HC5c TUs, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Df ∆ 
AICc 

Akaike 
weight 
ratio 

Adjust
ed R2 

L ratio 
Chi2 

p r N r 
(N=20) 

.4761 .5300  L TU Daphnia     1 5.5959 16.40 0.25 8.61600 0.003332 

p=.016 

25 

p=.016 

N= 36  

* highlight –   proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference  wi ratio- Akaike’s weight ratio 

r – correlation coefficient  

wi ratio- Akaike’s weight ratio 
LAAB – log-transformed aerobic aquatic biotransformation 

LHHL – log-transformed hydrolysis half-life  

LTSA/V R – log-transformed total  surface area to volume ratio 

LTU Daphnia – log-transformed toxic unit based on geometric mean for  Daphnia species 

L TU HC5 – C – log-transformed  toxic unit based on hazard concentration for 5% of crustacea 
species 

L Volume - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic carbon  absorption coefficient 

log kow – log-transformed  octanol-water coefficient 
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Table 7:  Model selection by AIC for Log Abundance Ratio Change for cladocera based on all pesticides from systems without 
fish using both Daphnia and HC5c TU, fate and structural properties of the system. 

Var 1 Var 
2 

Var 3 Df ∆ AICc Akaike 
weight 
ratio 

Adjuste
d R2 

L ratio 
Chi2 

p r N r 
(N=15) 

.5614 .5882 * L TU HC5 - C log 
Kow 

 2 0.00 1.00 0.51 22.12591 0.000016 
p=.015 

18 
p=.021 

.6103 .6103 L TSA/V R L TU 
HC5 - 
C 

log Kow 3 1.07 1.71 0.51 23.21549 0.000036 
p=.016 

15 
p=.016 

.5532 .6202 L Volume L TU 
HC5 - 
C 

log Kow 3 1.28 1.90 0.50 23.00625 0.000040 
p=.021 

17 
p=.014 

.6048 .6578 L TU HC5 - C LAA
B 

 2 1.53 2.15 0.48 20.59499 0.000034 

p=.008 

18 

p=.008 
.5844 .6110 L TU HC5 - C log 

Kow 
LAAB 3 1.99 2.70 0.49 22.29839 0.000057 

p=.011 

18 

p=.016 
.6121 .6257 L TU HC5 - C   1 4.05 7.57 0.41 15.92731 0.000066 
p=.007 

18 
p=.013 

.6519 .6418 L TU Daphnia    1 8.08 56.93 0.32 11.89307 0.000563 
p=.003 

18 
p=.010 

N= 28 

*  proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference  wi ratio- Akaike’s weight ratio 

r – correlation coefficient  

wi ratio- Akaike’s weight ratio 
LAAB – log-transformed aerobic aquatic biotransformation 

LTSA/V R – log-transformed total  surface area to volume ratio  

LTU Daphnia – log-transformed toxic unit based on geometric mean for  Daphnia species 

L TU HC5 – C – log-transformed  toxic unit based on hazard concentration for 5% of crustacea 
species 

L Volume - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log kow – log-transformed  octanol-water coefficient 
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Table 8:  Model selection by AIC for Log Abundance Ratio Change for insecticides using both Daphnia and HC5c TUs, fate 
and structural properties of the system. 

Var 1 Var 2 Var 3 Df ∆ AICc Akaike 
weight 
ratio 

Adjuste
d R2 

L ratio 
Chi2 

p r N r 
(N=15) 

.3392 .4444 * L TU HC5 - C L WPHL  2 0.00 1.00 0.27 10.78328 0.004555 
p=.123 

22 
p=.097 

.3119 .4412 L Volume L TU HC5 
- C 

L WPHL 3 1.41 2.03 0.26 11.54342 0.009123 
p=.194 

19 
p=.100 

.4903 .4595 L TSA/V R L TU HC5 
- C 

L WPHL 3 1.57 2.19 0.26 11.38793 0.009803 
p=.054 

16 
p=.085 

.3259 .4612 L TU HC5 - C log Koc L WPHL 3 1.89 2.58 0.25 11.06079 0.011402 
p=.139 

22 
p=.084 

.3435 .4442 L TU HC5 - C L WPHL L HHL 3 1.99 2.70 0.25 10.96921 0.011894 
p=.118 

22 
p=.097 

.4189 .4771 L TU HC5 - C   1 3.34 5.30 0.15 5.29163 0.021428 

p=.052 

22 

p=.072 
.4001 .4350 L TU Daphnia    1 4.91 11.67 0.09 3.71455 0.053940 

p=.065 

22 

p=.105 

N= 27 

*  proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

 wi ratio- Akaike’s weight ratio 

r – correlation coefficient  

LHHL – log-transformed  hydrolysis half-life 

LTSA/V R – log-transformed total  surface area to volume ratio 

LTU Daphnia – log-transformed toxic unit based on geometric mean for 
Daphnia species  

L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 
5% of crustacean species 

L Volume - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic  carbon  absorption coefficient 
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Table 9:  Model selection by AIC for Log Abundance Ratio Change for cladocera based on insecticides from systems without 
fish using both Daphnia and HC5c TU, fate and structural properties of the system. . 

Var 1 Var 2 Var 3 Var 4 Df ∆ 
AICc 

Akaike 
weight 
ratio 

Adjus
ted R2 

L ratio 
Chi2 

p r N r 
(N=12) 

.4443 .4230 * L TU 
HC5 - C 

   1 0.00 1.00 0.44 12.79 0.000349 

p=.074 

17 

p=.171 

.5454 .5769 L TU HC5 - 
C 

L WPHL   2 0.68 1.41 0.45 14.35 0.000767 

p=.024 

17 

p=.050 

.4817 .6704 L TSA/V R L TU 
Daphnia  

log Koc L WPHL 4 1.28 1.89 0.49 18.35 0.001056 

p=.081 

14 

p=.017 

.5365 .6517 * L TU 
Daphnia  

L WPHL   2 1.03 1.67 0.44 14.00 0.000913 

p=.026 

17 

p=.022 

.5250 .6162 L TU 
Daphnia  

log Koc L WPHL  3 1.56 2.18 0.46 15.75 0.001279 

p=.030 

17 

p=.033 

.4596 .4596 L TSA/V R L TU HC5 - 
C 

  2 1.51 2.13 0.43 13.52 0.001160 

p=.133 

12 

p=.133 

.5443 .7054 L TSA/V R L TU 
Daphnia  

L WPHL  3 1.98 2.69 0.45 15.32 0.001561 

p=.044 

14 

p=.010 
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Table 9:  Model selection by AIC for Log Abundance Ratio Change for cladocera based on insecticides from systems without 
fish using both Daphnia and HC5c TU, fate and structural properties of the system. . 

Var 1 Var 2 Var 3 Var 4 Df ∆ 
AICc 

Akaike 
weight 
ratio 

Adjus
ted R2 

L ratio 
Chi2 

p r N r 
(N=12) 

.3646 .4590 L Volume L TU HC5 - 
C 

  2 1.88 2.56 0.42 13.15 0.001394 

p=.165 

16 

p=.133 

.5096 .4496 L TU 
Daphnia  

   1 5.84 18.55 0.25 6.95 0.008399 

p=.037 

17 

p=.143 

N= 20 

*  proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

 wi ratio- Akaike’s weight ratio 

r – correlation coefficient  

LTSA/V R – log-transformed total surface area to volume  ratio 

LTU Daphnia – log-transformed toxic unit based on geometric mean for 
Daphnia species  

L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 
5% of crustacean species 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic carbon  absorption coefficient  
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Table 10:  Model selection by AIC for Log Abundance Ratio Change for copepoda based on all pesticides using both Daphnia 
and HC5c TU, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Df ∆ AICc Akaike 
weight 
ratio 

Adjusted R2 L ratio Chi2 p r 

.6970 * L Volume L TU HC5 - C log Kow  3 0.00 1.00 0.38 23.55057 0.000031 
p=.000 
.7158 L TSA/V R L TU HC5 - C log Kow  3 1.25 1.87 0.36 22.30475 0.000056 
p=.000 
.6897 L Volume L TU HC5 - C log Kow L HHL 4 1.97 2.68 0.36 23.67782 0.000093 

p=.000 
.7109 L Volume L TU HC5 - C log Kow LAAB 4 2.01 2.74 0.36 23.63552 0.000094 

p=.000 
.6660 L TU HC5 - 

C 
log Kow   2 2.96 4.39 0.32 18.50257 0.000096 

p=.001 

.6250 L TU HC5 - 
C 

   1 8.66 76.15 0.20 10.71191 0.001064 
p=.001 

.4787 L TU 
Daphnia  

   1 11.71 349.03 0.14 7.66702 0.005624 
p=.021 

N= 43 

*  proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

r – correlation coefficient  

LAAB – log-transformed aerobic aquatic biotransformation 

L HHL  - log-transformed hydrolysis half-life  

LTU Daphnia – log-transformed toxic unit based on geometric mean for 
Daphnia species  

L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 
5% of crustacea species 

L TSA/VR - log-transformed total surface area to volume ratio 

L Volume  - log-transformed volume  

Log Kow  - log-transformed octanol-water coefficient  
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Table 11:  Model selection by AIC for Log Abundance Ratio Change for copepoda from all pesticides from systems that 
contained no fish using both Daphnia and HC5c TU, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Df ∆ 
AICc 

Akaike 
weight 
ratio 

Adjusted 
R2 

L ratio 
Chi2 

p r 

.7321 * L TU 
HC5 - C 

log Kow   2 0.00 1.00 0.43 21.63431 0.000020 
p=.002 
.7505 L Volume L TU HC5 - 

C 
log Kow  3 0.73 1.44 0.43 23.02625 0.000040 

p=.001 
.7387 L TU HC5 

- C 
log Kow LASB  3 0.84 1.52 0.43 22.91700 0.000042 

p=.002 
.7455 L TSA/V R L TU HC5 - 

C 
log Kow  3 1.21 1.83 0.42 22.54512 0.000050 

p=.001 
.7504 L TU HC5 

- C 
log Kow LAAB  3 1.56 2.18 0.42 22.19471 0.000059 

p=.001 
.7769 L Volume L TU HC5 - 

C 
log Kow LAAB 4 1.81 2.47 0.43 24.07290 0.000077 

p=.001 
.5713 L TU 

Daphnia 
   1 8.59 73.27 0.25 10.93521 0.000944 

p=.026 
.7011 L TU HC5 

- C 
   1 5.44 15.14 0.31 14.08845 0.000174 

p=.004 

N= 35 

*  proposed best model for dataset 

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

r – correlation coefficient  

LAAB – log-transformed aerobic  aquatic biotransformation 

LASB – log-transformed aerobic  soil biotransformation 

LTU Daphnia – log-transformed toxic unit based on geometric mean for 
Daphnia species  

L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 
5% of crustacea species 

L TSA/VR - log-transformed total surface area to volume ratio 

L Volume  - log-transformed volume  

Log Kow  - log-transformed octanol-water coefficient  
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Table 12:  Model selection by AIC for Log Abundance Ratio Change for copepoda based on insecticides using both Daphnia 
and HC5c TU, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Var 4 Df ∆ AICc Akaike 
weight 
ratio 

Adjusted 
R2 

L ratio 
Chi2 

p r 

.6706 * L TSA/V R L TU HC5 - C L WPHL  3 0.00 1.00 0.42 19.63412 0.000202 
p=.004 
.6230 * L Volume L TU HC5 - C L WPHL  3 0.08 1.04 0.42 19.55796 0.000210 
p=.010 
.6843 L TSA/V R L TU HC5 - C log Koc L WPHL 4 0.87 1.54 0.42 20.92309 0.000328 
p=.003 
.6464 L Volume L TU HC5 - C log Koc L WPHL 4 0.88 1.55 0.42 20.91494 0.000329 
p=.007 
.6020 L Volume L TU HC5 - C   2 1.91 2.59 0.36 15.58067 0.000414 

p=.014 
.6188 L TU HC5 - C    1 5.32 14.29 0.26 10.03262 0.001538 
p=.011 
.2587 L TU Daphnia     1 10.26 168.76 0.13 5.09413 0.024007 
p=.333 

N = 30  

*  proposed best model for dataset   

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

r – correlation coefficient  

LTU Daphnia – log-transformed toxic unit based on geometric mean for Daphnia 
species 

L TU HC5 – C – log-transformed toxic unit based on hazard concentration 
for 5% of crustacea species 

L TSA/VR - log-transformed total surface area to volume ratio 

L Volume  - log-transformed volume  

L WPHL – log-transformed water photolysis half-life 

log Koc - log-transformed octanol-carbon partition coefficient 
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Table 13:  Model selection by AIC for Log Abundance Ratio Change for all insecticides from systems that contained no fish 
using both Daphnia and HC5c TU, fate and structural properties of the system. 

Var 1 Var 2 Var 3 Df ∆ AICc Akaike 
weight 
ratio 

Adjusted 
R2 

L ratio 
Chi2 

p r N 

.7153 * L TU HC5 - C LAAB  2 0.00 1.00 0.63 24.36561 0.000005 
p=.009 

12 

.6232 L TSA/V R L TU HC5 - C LAAB 3 0.93 1.59 0.64 25.67073 0.000011 
p=.073 

9 

.6588 L Volume L TU HC5 - C LAAB 3 1.37 1.98 0.63 25.23568 0.000014 
p=.027 

11 

.7191 L TU HC5 - C L WPHL LAAB 3 1.93 2.63 0.62 24.66845 0.000018 
p=.008 

12 

-.0720 L TU Daphnia    1 15.17 1966.07 0.24 6.98846 0.008204 
p=.824 

12 

.5338 L TU HC5 - C   1 9.99 147.90 0.40 12.16298 0.000487 
p=.074 

12 

N = 22  

*  proposed best model for dataset   

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

r – correlation coefficient  

LAAB – log-transformed aerobic aquatic biotransformation 

LTU Daphnia – log-transformed toxic unit based on geometric mean for 
Daphnia species 

L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 
5% of crustacea species 

L TSA/VR - log-transformed total surface area to volume ratio 

L Volume  - log-transformed volume  

L WPHL – log-transformed water photolysis half-life 
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Figure 1:  Taxonomic tree of crustaceans in dataset used for modelling responses at the species level.  
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Figure 2:  Best model for crustacea species data – L Daphnia TU, log Kow and L HHL.  

Predicted vs. Observed Values
Dependent variable: count ratio change
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LHHL – log-transformed hydrolysis half-life 

LTU Daphnia – log-transformed toxic unit based on geometric mean for Daphnia species 

log Kow - log-transformed octanol-water  coefficient  
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Figure 3:  Best model for cladocera – L TU HC5-C * L WPHL 

Predicted vs. Observed Values
Dependent variable: L A R
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L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 5% of crustacea species 

L WPHL – log-transformed water photolysis half-life 
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Figure 4:  Best copepoda model – L TU HC5-C and L AAB.    

Predicted vs. Observed Values
Dependent variable: L A R
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L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 5% of crustacea Species 

LAAB – log-transformed aerobic aquatic biotransformation 
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4 INSECTA 

4.1  Modelling Insecta Abundance Responses 

The data used for these models are based on insecta abundance responses to pesticide application 

in lentic systems. However, due to few entries on herbicides, carbendazim or rotenone modelling 

was done only with insecticide data.  Many studies reported responses at the family level as well 

as the species level; consequently the dependent variable - count ratio of effect - was derived at 

both taxonomic levels. The count ratio was calculated by dividing the number of statistically 

affected insecta species/families by the total number insecta species/families recorded for that 

experiment (see Equation 4).  All effects are abundance decreases.  

Three log-transformed toxic units (TUs) were used as explanatory variables: 1) geometric means 

of Daphnia species (L TU Daphnia), 2) hazard concentrations for 5% of the crustacean species (L 

TU HC5 - C), and 3) hazard concentrations for 5% of the insecta species (L TU HC5 - I). This 

was done to test the hypothesis that states the HC5s better predict the effects seen. The inclusion 

of the L TU HC5 – C was partially based on its strong statistical correlation with both L TU HC5 

– I and L TU Daphnia. Another reason for inclusion is that registrants are not obligated to give 

laboratory single species data for insecta in order to assess aquatic impacts of pesticides.  

Log-transformed structural properties of system (volume – L volume and surface area to volume 

ratio - L TSA/V R) and all log-transformed fate and physico-chemical properties of the pesticide 

(octanol-water partition coefficient – log Kow, organic carbon absorption coefficient – log Koc, 

aerobic soil biotransformation - L ASB, aerobic aquatic biotransformation - L AAB, water 

photolysis half-life - L WPHL, hydrolysis half-life - LHHL) were initially entered into the model. 
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Inclusion of all these explanatory variables in the AIC reduced the number of entries available for 

modelling and created sub-data sets of 35 entries for species and 42 for family. Given these small 

sample sizes, it was decided that modelling would be done based on all available data as well as 

on a more restricted training set: 2/3 of the data used for modelling, and the remaining 1/3 used to 

validate the best models for species data.  However, since there were 69 entries for family, it was 

decided that all the data with all independent parameters known would be used for AIC analyses 

and the best approximating models would be validated using the remaining data.  

4.2  Modelling Insecta Species Abundance Responses 

The 35 available entries came from 13 studies that reported on nine insecticides – carbaryl, 

carbofuran, chlorpyrifos, deltamethrin, diflubenzuron, lindane, methyl parathion, permethrin and 

phorate. Eleven families within six orders were represented; 61% of the data came from the order 

diptera and its three families - ceratapogonidae, chaoboridae and chironomidae, approximately 

19% are from the ephemeroptera families of baetidae and caenidae and the remaining species 

were from the families of dytiscidae, gerridae, hydrometridae, leptoceridae, limnephilidae and 

sialidae (see Figure 5).  

The AIC based on the training set data indicate that five models can be considered to the best 

approximating based on an AICc difference of less than two (see Table 14), while the AIC scores 

for all available data considered ten models as the best approximating models (see Table 15). All 

these models are statistically significant and the training set models are able to explain 29 to 34% 

of the variance observed in the insecta species response ratios, but those based on all available 

data are only able to explain 13 to 20 percent. In addition, all the training set models failed the 

validation test using an independent data set – the predicted impacts were not statistically 
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correlated to the observed study impacts.  

Even though these models were poor predictors, after modelling all insecta species collected (48 

entries) using the variable of the best approximating models the following trends were 

observed/confirmed: 

• HC5-C and HC5-I TUs were the only statistically significant contributors.  

• HC5-C is the best TU predictor variable for modelling the proportion of insect species 

that will be affected when exposed to insecticides 

• The best model which was L TU HC5-C because it had a consistent, though poor, 

adjusted R2 of 0.19 (based on 23, 35 or 48 entries) and it was the only model that 

could be statistically validated.  

Given the poor strength of the models no extrapolations pertaining to expected effects at the 

standard threshold level were done and the following discussions will not include details of these 

results.  

4.3  Modelling Insecta Family Abundance Responses 

The 42 values used for AIC analysis came from 14 known families within eight orders; given data 

gaps (in species taxonomic classification) and derived values the total number of families 

reflected is unknown. About 62% of the data came from diptera families, with 15% belonging to 

chaoboridae and 23% to chironomidae; the remaining 24% represented ceratapogonidae, 

culicidae and tipulidae. Approximately 17% of the data came from ephemeroptera families of 

caenidae and baetidae. The remaining data represented the families of coenagrionidae, dytiscidae, 

hydrometridae, leptoceridae, limnephilidae and sialidae (see Figure 5).  
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The entries for AIC analysis came from 17 studies based on ten insecticides: carbaryl, carbofuran, 

chlorpyrifos, cypermethrin, deltamethrin, diflubenzuron, lindane, methyl parathion, permethrin 

and phorate, while the validation set consisted of 25 entries from eight studies covering nine: 

insecticides bendiocarb, carbofuran, deltamethrin, diflubenzuron, esfenvalerate, fenitrothion, 

methyl parathion, permethrin and trichlorphon.  

Of the 93 model combinations possible with a TU and no correlating variables, 19 can be 

considered as the best approximating models according to the AICc difference (see Table 16). All 

of the 19 candidate models were statistically significant and the adjusted R2s range from 0.20 to 

0.27. Since, many structural system properties were missing and most of the adjusted R2s models 

are within a small range, only the most parsimonious models that did not include a structural 

property were validated using the independent data. All these models (six) were statistically 

validated; the predicted impacts are statistically correlated with those reported in the experiments.  

HC5-C and HC5-I are statistically significant contributors in all the models; the former is found 

in 16 models while the latter only contribute to three. The L TU HC5-I (adjusted R2 = 0.18, see 

Equation 43), even though statistically significant, does not have enough evidence to support it 

being considered as one of the best approximate models. But the L TU HC5-C (adjusted R2 = 

0.20, see Equation 44) model is among the 19 best approximating models, is the only model with 

all of its predictor variables being considered as statistically significant contributors below 

p=0.05, and has been statistically validated. The comparatively strong predictive power of just the 

HC5-C TU may explain why so many models qualify as being the best approximating model.  
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Equation 43 

L TU HC5-C  

Count Ratio of Effect = [0.4429 + (0.1717 * L TU HC5-C)] 

Equation 44 

L TU HC5-I  

Count Ratio of Effect = [0.6505 + (0.1396 * L TU HC5-C)] 

With the exception of the TU predictors, the only other variable that was statistically significant 

below p=0.05 is L AAB, which is a statistically significant contributor in two of its seven models. 

Two models have L ASB and another four models contain L HHL, while seven models include L 

TSA/V R and another had L Volume. Log Kow is found in seven models, two others have L 

WPHL and one has log Koc. 

Using the results based on all 19 models does not greatly assist in deciphering the better models; 

however when the selection is restricted to only those models with an Akaike weight ratio of less 

than two, a new trend is seen. First of all, five of the nine models contain L AAB as a predictor 

and two others its correlated counterparts L ASB and L HHL. Only a third of these models have 

log Kow as a contributing factor and one other contains L WPHL. Another third of these models 

include L TSA/V R.  

The results seem to indicate that the L TU HC5-C and L AAB (adjusted R2 = 0.25, see Equation 

45, see Figure 6), which was also statistically validated, or L TU HC-C (adjusted R2 = 0.20, see 

Equation 43) models are the best for predicting responses of insecta families to insecticide 

exposure.  
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Equation 45 

L TU HC5-C and L AAB 

Count Ratio of Effect = [0.2002 + (0.1950 * L TU HC5-C) + (0.1374 * L AAB)] 

4.3.1  Summary of Insecta Family Modelling Results 

The results from the best models indicate that HC5-C is the best TU predictor variable, and L 

AAB is an important fate parameter for modelling the proportion of insect families affected by 

insecticide exposure. However, it should be noted that the predictive power for insecta is not as 

good as for crustacea with adjusted R2 values within the range of 0.20 to 0.27. Nonetheless, the 

proposed best models for predicting impacts of insecticides on insect family (L TU HC5-C and 

LAAB, L TU HC5-C) and L TU HC5-I were generated using all data collected. Since L AAB 

was statistically significant and both the L TU HC5-C and L TU HC-I models had the lower 

adjusted R2s (0.24 and 0.18 respectively), the impact predicted at 0.1 * TU was calculated based 

on the L TU HC5-C and L AAB (adjusted R2 = 0.29, see Equation 46) model.  

Equation 46 

L TU HC5-C and L AAB 

Count Ratio of Effect = [0.1410 + (0.2104 * L TU HC5-C) + (0.1321 * L AAB)] 

The lowest (-0.34), highest (2.31) and average (0.985) values for L AAB found in the database 

were placed into the model equation to determine the level of effect a 0.1 * TU HC5-C would 

have on insecta families. On average, an estimated six percent of insect families are predicted to 

be affected at insecticide concentrations at 0.1 * TU HC5-C. However, insecticides that degrade 

rapidly by means of aquatic aerobic biotransformation are not predicted to affect abundance, but 
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those that are resistant to this breakdown are predicted to cause up to 24% of families being 

affected. A protective threshold concentration at 1 * TU HC5-C will reduce at least 10% of insect 

families with an average reduction of about 27%. Therefore such a threshold is not protective of 

aquatic insects.  

4.4  Discussion 

The results indicate that laboratory toxicity data alone and/or with other variables can create 

statistically significant models capable of predicting field effects; and generally inclusion of fate, 

physico-chemical and system structure properties to the models improved predictions, however in 

most cases they (these additional variables) were not statistically significant.  Aerobic aquatic 

biotransformation half-life, which is the closest laboratory fate parameter to a field half-life, was 

the best and only statistically significant predictor variable other than the toxicity units.  

Unfortunately, the validation of all the best approximating models with an independent dataset 

proved to be problematic, due to missing toxicity units, fate properties and most popularly system 

structural properties. But, all the models that were tested for validation passed; the impacts they 

predicted are statistically correlated to the impacts seen in insecticide experiments.  

However, the adjusted R2s are low, ranging from 0.20 to 0.27. While the fact that the count ratio 

of effect (the dependent variable) did not take into account when the maximum effect was 

detected or its duration and some were made up from results reported at the species level, may be 

on reason for poor model predictability; it is more likely the predictor variables initially entered 

into the AIC are not the best to predict impacts of pesticides on insects. Therefore when coupled 

with the diversity of insects and complexities of dynamic ecosystem relationships and conditions 

(predator-prey, generation time, life-cycle stage, system physico-chemical properties, etc) the 
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models were unable to predict the likely effects of insecticide exposure on insect families. This is 

partly supported by the preference of a crustacea based toxicity unit to an insecta based one. 

The hazard concentration for crustacea toxicity unit is not only included in the majority of best 

approximating models, but is also found in the more predictive models, i.e., those models with 

higher adjusted coefficients of determination. It should be noted that the coefficients of 

determination for those models based on HC5-I or HC5-C TUs alone, are not very different, 

varying by two (42 entries)  to six (>60 entries) percent. Nonetheless, the results seems to indicate 

laboratory insect toxicity data is rather lacking to the extent that a hazard concentration  value 

based on insecta less reflects the effects of insecticides on insects than a hazard concentration 

value based on crustacea. This poor characterisation of insect toxicity data may explain why the 

best models have such low predictive powers. 

Our models support the hypothesis that TUs based on HC5s (HC5-C and HC5-I) are better 

predictors than those based on the geometric means of the most common required species for 

registration (Daphnia). However, it is worthy to note that the Daphnia toxicity unit was unable to 

statistically explain the variance observed in insecta responses to insecticide exposure, especially 

since risk assessors widely use some laboratory based Daphnia value to determine the effect an 

insecticide would have on the aquatic environment. This is done simply because Daphnia is 

thought to be the most sensitive or amongst the most sensitive to insecticides. Given that the 

Daphnia toxicity units can not predict insecticide effects on aquatic insects, it is left to wonder if 

they can therefore protect them.  

Our best model based on hazard concentration for crustacea toxicity units and aerobic aquatic 

half-lives (L TU HC5-C and L AAB; adjusted R2 = 0.29, see Equation 46) predicts that an 
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average of 6% of families can be affected at 0.1 times a median HC5-C based on acute toxicity 

data and at least 10% will be affected at the HC5-C concentration. With the exception of a few 

insecticides (temephos, azinphos-methyl) all others in our database show that 0.1 * HC5-C values 

that are between 1.28 (chlorpyrifos) and 246 (lindane) times more conservative than the 0.01 * 

Daphnia values. So our results contradicts Brock et al. (2000a) and Brock et al. (2006) who 

concluded that their 0.01 * Daphnia and median HC5 values (our study also used median HC5 

values) can protect the environment against insecticide induced effects. While differences exist 

among the toxicity values, classification of effects and methods of determining protectiveness of 

the threshold concentration used by Brock et al. (2000a), Brock et al. (2006) and our study may 

account for the different conclusions, it still appears very unlikely that a threshold concentration 

at 0.01 * Daphnia can protect aquatic insect. 
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Figure 5:  Taxonomic tree of insects in dataset used for modelling responses at the species level.  
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Table 14:  Model selection by AIC for Count Ratio of Effects for insecta species validation-training set data. 
Var 1 Var 2 Var 3 Df ∆ 

AICc 
Akaik
e 
weigh
t ratio 

Adjus
ted R2 

L 
ratio 
Chi2 

p r N r 
(N = 
12) 

.3719 .2976 *L TU HC5 - C L HHL  2 0.00 1.00 0.34 11.85175 0.002669 
p=.156 

16 
p=.347 

.3433 .3433 L TSA/V R L TU HC5 
- C 

L HHL 3 1.44 2.05 0.33 12.63474 0.005497 
p=.275 

12 
p=.275 

.3549 .2421 L TU HC5 - C L WPHL L HHL 3 1.49 2.10 0.33 12.58550 0.005624 
p=.177 

16 
p=.448 

.4726 .2416 L TU HC5 - C LAAB  2 1.86 2.53 0.29 9.99321 0.006761 

p=.064 

16 

p=.449 
.3764 .2957 L TU HC5 - C log Kow L HHL 3 1.99 2.70 0.32 12.08255 0.007106 

p=.151 

16 

p=.351 
.5574 p=.183 L TU HC5 - C   1 3.79 6.65 0.19 5.86557 0.015440 
p=.025 

16 
.4111 

.4193 p=.184 L TU HC5 - I   1 5.14 13.07 0.14 4.51453 0.033608 
p=.136 

14 
.2976 

N = 23  

*  proposed best model for dataset   

Var – variable 

r – validation correlation coefficient 

Df – degree of freedom 

∆AICc - AICc difference 

LAAB – log-transformed aerobic aquatic biotransformation  

LHHL – log-transformed hydrolysis half-life 

 

L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

LTU HC5 - I – log-transformed toxic unit based on hazard concentration 
for 5% of insecta species 

L TSA/V R - log-transformed total surface area to volume ratio 

L WPHL - log-transformed water photolysis half-life 

log kow - log-transformed octanol-water  coefficient 
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Table 15:  Model selection by AIC for Count Ratio of Effects for insect species using all available data. 
Var 1 Var 2 Var 3 Df ∆ AICc Akaike weight 

ratio 
Adjusted 
R2 

L ratio 
Chi2 

p 

* L TU HC5 - C L HHL  2 0.00 1.00 0.20 10.06081 0.006536 

L TU HC5 - C   1 0.62 1.36 0.16 7.33062 0.006779 

L TU HC5 - C log Koc  2 1.12 1.75 0.18 8.94336 0.011428 

L TSA/V R L TU HC5 - C L HHL 3 1.26 1.88 0.20 10.91470 0.012196 

L Volume L TU HC5 - C log Koc 3 1.59 2.22 0.19 10.58683 0.014183 

L TU HC5 - C LAAB  2 1.75 2.40 0.16 8.31306 0.015662 

L TU HC5 - C log Koc L HHL 3 1.86 2.54 0.18 10.31898 0.016041 

L Volume L TU HC5 - C L HHL 3 1.86 2.54 0.18 10.31878 0.016042 

L TU HC5 - I   1 1.87 1.00 0.13 6.07979 0.013674 

L Volume L TU HC5 - C  2 1.91 2.60 0.16 8.15316 0.016965 

L TU Daphnia   1 5.45 2.55 0.04 2.49993 0.113851 

N = 35  

*  proposed best model for dataset   

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

r – validation correlation coefficient 

LAAB – log-transformed aerobic aquatic biotransformation 

LHHL – log-transformed hydrolysis half-life 

LTU Daphnia – log-transformed toxic unit based on geometric mean for Daphnia 
species 

L TSA/V R – log-transformed total surface area to volume ratio 

L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

L TU HC5 – I – log-transformed toxic unit based on hazard 
concentration for 5% of insecta species 

L Volume - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic carbon absorption coefficient 
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Table 16:  Model selection by AIC for Count Ratio of Effect from insecta family using all data with all dependent variables. 
Var 1 Var 2 Var 3 Var 4 Df ∆ 

AICc 
Akaik
e 
weigh
t ratio 

Adjus
ted R2 

L 
ratio 
Chi2 

p r N 

.6455 * L TU HC5C L AAB   2 0.00 1.00 0.25 14.27225 0.000796 
p=.002 

21 

L TSA/V R L TU 
HC5C 

L AAB  3 0.59 1.34 0.26 15.77622 0.001260 

L TU HC5C L WPHL L AAB  3 0.62 1.36 0.26 15.74399 0.001280 

L TU HC5C Log kow L AAB  3 0.72 1.43 0.26 15.64612 0.001340 

  

.4795 L TU HC5C L HHL   2 0.77 1.47 0.24 13.49771 0.001172 
p=.028 

21 

L TSA/V R L TU 
HC5C 

L WPHL L AAB 4 1.09 1.73 0.27 17.37253 0.001636   

.5181 L TU HC5C LOG 
KOW 

  2 1.12 1.75 0.23 13.15705 0.001390 
p=.014 

22 

L TSA/V R L TU HC5 
I 

  2 1.24 1.86 0.23 13.02921 0.001482 

L TU HC5C Log kow LASB  3 1.36 1.97 0.25 15.00413 0.001813 

  

.7640 L TU HC5C LASB   2 1.45 2.06 0.23 12.82506 0.001641 
p=.000 

21 

.5608 L TU HC5 I L HHL   2 1.48 2.09 0.22 12.79302 0.001667 
p=.012 

19 

L Vol L TU 
HC5C 

log Kow  3 1.55 2.17 0.24 14.81637 0.001980 

L TU HC5C Log kow L HHL  3 1.66 2.29 0.24 14.70608 0.002086 

L TSA/V R L TU 
HC5C 

Log kow L AAB 4 1.78 2.43 0.26 16.68499 0.002225 

L TSA/V R L TU 
HC5C 

  2 1.78 2.72 0.22 12.49296 0.001937 

L TSA/V R L TU HC5 
I 

L HHL  3 1.89 2.43 0.24 14.47160 0.002329 
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Table 16:  Model selection by AIC for Count Ratio of Effect from insecta family using all data with all dependent variables. 
Var 1 Var 2 Var 3 Var 4 Df ∆ 

AICc 
Akaik
e 
weigh
t ratio 

Adjus
ted R2 

L 
ratio 
Chi2 

p r N 

L TSA/V R L TU 
HC5C 

Log kow  3 1.94 2.58 0.23 14.42767 0.002377 

L TU HC5C LOG KOC L AAB  3 1.95 2.63 0.23 14.41609 0.002390 

.7030 L TU HC5C    1 1.85 2.65 0.20 10.33423 0.001306 
p=.000 

22 

.6550 L TU HC5 I    1 2.63 3.73 0.18 9.54992 0.002000 
p=.002 

20 

N = 42  

*  proposed best model for dataset   

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

r – validation correlation coefficient 

LAAB – log-transformed aerobic aquatic biotransformation 

LASB - log-transformed aerobic soil biotransformation 

LHHL – log-transformed hydrolysis half-life 

L TSA/V R – log-transformed total surface area to volume ratio 

L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 5% of 
crustacea species 

L TU HC5 – I – log-transformed toxic unit based on hazard 
concentration for 5% of insecta species 

L Vol - log-transformed volume 

L WPHL – log-transformed water  

photolysis half-life 

log Koc – log-transformed  organic carbon absorption 
coefficient 

 log kow - log-transformed  octanol – water coefficient 



 

NAESI Technical Series No. 3-31 
Page 111 

Figure 6:  Best insecta family model (based on 65 entries) – L HC5-C and L AAB 

Predicted vs. Observed Values
Dependent variable: count ratio
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 L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 5% of crustacea species 

LAAB – log-transformed aerobic aquatic biotransformation 
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5 ALGAE 

5.1 Modelling Algal Species Abundance Responses 

Algae are important to the aquatic community and changes in their function or structure can 

impact the entire ecosystem. They are the main primary producers in most freshwater ecosystems, 

and are food for many aquatic invertebrates such as cladocera and copepoda. Given their trophic 

level and function, they are sensitive to both changes in biological and physico-chemical 

properties of a system. For example, a reduction in the predatory organism or increase in 

phosphorus can both lead to an algal bloom. So a change in their abundance can be a quick 

indication of changes within an aquatic ecosystem.  

Data used for generating models for this aspect of the research came from lentic systems and 

represented effects (both increases and decreases) based on species abundance. Eight experiments 

had at least one algae species that increased metribuzin (2), atrazine (1), fenthion (2), and 

cypermethrin (4).  

A count ratio of effect, which represented the number of algal species affected (both increases 

and decreases) divided by the total number of algal species found in that experiment, was the 

dependent variable (see Equation 4).  

Given the lack of single species toxicity data it was decided that TUs based on these values would 

not be entered into the AIC. The three log-transformed toxic units (TUs) entered into the AIC 

analysis were: 1) hazard concentrations for 5% of the algal species (L TU HC5 - A); 2) geometric 

means of Daphnia species (L TU Daphnia); and 3) hazard concentrations for 5% of the 

crustacean species (L TU HC5 - C). This was done to test the hypothesis that states the HC5s 

better predict the effects seen. Even though the crustacea toxicity data were not correlated with 
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HC5-A, they were included to see how well they predict in comparison to these more 

scientifically based TUs.  In addition, the EU’s Uniform Principles use a multiplier factor based 

on the most sensitive standard test species for a pesticide to derive a No Effect Concentration 

(NEC) for pesticides in surface water (Van den Brink et al., 2002; Brock et al., 2000a,b). A 

multiplier of 0.01 is used on Daphnia L(E)C50 or a more sensitive standard fish is used for 

insecticides; and 0.1 is used for EC50 algae for herbicides.  

The magnitude of impact was assessed at 0.01 * TU Daphnia or 0.1 * TU HC5-C or 0.1 * TU 

HC5-A for the best models. The latter two levels are selected because risk assessors usually using 

NOEC values for SSD extrapolations, but our research uses HC5 values based on geometric 

means for L(E)C50s. Therefore a safety factor of ten, similar to Van den Brink et al. (2003), was 

used.  

Both structural properties of system log-transformed (volume – L volume and surface area to 

volume ratio - L TSA/V R) and all log-transformed fate and physico-chemical properties of the 

pesticide (octanol-water partition coefficient – log Kow, organic carbon absorption coefficient – 

log Koc, aerobic soil biotransformation - L ASB, aerobic aquatic biotransformation - L AAB, 

water photolysis half-life - L WPHL, hydrolysis half-life - LHHL) were included. This facilitates 

testing the hypothesis stating these properties help to predict the effects observed.  

5.2  Modelling Algal Species Abundance Responses to All Pesticides 

The 41 entries (30 from herbicides) available for modelling, i.e., those having all fate, physico-

chemical properties and system structural properties, came from 12 studies; and covered three 

insecticides (cypermethrin, fenthion, lambda-cyhalothrin) and seven herbicides (alachlor, 

atrazine, dichlobenil, hexazinone, metamitron, metribuzin, metsulfuron methyl). A validation 



 

NAESI Technical Series No. 3-31 
Page 114 

sample was collected from the available algae data; it consisted of four insecticides (fenthion, 

lambda-cyhalothrin, permethrin, esfenvalerate) and six herbicides (alachlor, atrazine, hexazinone, 

metamitron, metribuzin, metsulfuron methyl).  

The species that make up the data used for modelling came from nine phyla, however only 5% of 

the species belonged to dinophyta, euglenophyta, haptophyta, myzozoa or pyrophyta. 

Chlorophyta species contributed to about 33% of the data, with the class chlorophyceae 

containing 31% of the total data and conjugophyceae and eophyceae making up the remaining 

two percent. The cryptophyta families of pyrenomonadaceae and cryptomonadaceae added nine 

percent of the species data; while the cyanobacteria contributed 19%, with the class chroobacteria 

being the major contributor (12% of total species data). Thirty – four percent of the species 

belonged to the phylum ochrophyta of which the class bacillariophyceae was the main contributor 

(17% of total species data). The ochrophyta class Coscinodiscophyceae added to about eight 

percent of the total data, and its other classes - chrysophyceae, fragilariophyceae and 

synrophyceae contained approximately eight percent of the species used for modelling.  

The good representation of herbicide data allowed for separate AIC analyses, which thereby 

facilitated testing the hypothesis that better model predictability is achieved when data is grouped 

according to its pesticide type. Given the small sample size, it was decided that a validation- 

training set method would be used in addition to modelling all available data. 

Unfortunately computational violations occurred when all the data was entered into the software 

for AIC analysis. The programme encountered a few pivot errors, which led to an under reporting 

of degrees of freedom values. This was rectified before further analyses were done. 
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5.2.1    Models based on Training Set Data  

Seventy-one model combinations were possible with a TU and uncorrelated variables. Seven of 

these models can be considered to the best according as the AICc difference of less than or equal 

to two (see Table 17). All of these models were statistically significant below p= 0.05 and the 

adjusted R2s are within a range of 0.31 to 0.37. 

The validation of the seven models varied according to the size of the validation sample used. 

Validation done using entries with all its fate, physico-chemical, respective TUs and system 

structural properties, resulted in none of the models being statistically validated below p=0.05. 

However, when the dataset was only modified according to the parameters present in the model, 

three models could be validated. All three of the validated models had either log Koc or log Kow 

as an explanatory variable, but the four that did not contain these variables could not be validated.  

Five of the seven models have HC5-C as its predicting TU variable, and the other two use 

Daphnia spp. Of the 999 models generated by the AIC the L TU HC5-A model was not included 

and when the model was generated it was found that it is not statistically significant.  However, 

the model based on the HC5-C TU (adjusted R2 = 0.12, Equation 47) is statistically significant, 

but the one based on the Daphnia TU is not. 

Equation 47 
L TU HC5-C  

Count Ratio of Effect = [0.1233 + (0.1692 * L TU HC5-A)] 

All seven best approximating models contain a structural property of the system; three have L 

Volume and the other four L TSA/V R. These structural properties are statistically significant 

contributors in all of the models. More effects are expected in the systems that had smaller 
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volumes and those with greater surface area to volume ratio. L AAB is considered a statistically 

significant contributing factor in all of the seven models. An increased level of effects is expected 

with increased aerobic aquatic biotransformation half-lives. Two models include log Kow and 

another has log Koc, however none of these properties were considered as statistically significant 

contributors to the models at p-values below 0.05.  

These results indicate that LAAB, physical properties of the system and either the Daphnia or 

HC5-C TU are important for modelling proportion of algal species affected by pesticide 

exposure. Given the close predictive range of these best approximating models, the statistical 

significance of the previously mentioned variables and statistical validation, proposing a single 

best model for this data is difficult. So using an Akaike weight ratio of less than two, the two best 

models are 1) L TSA/VR , L TU Daphnia and LAAB  (adjusted R2 = 0.33, see Figure 7) and 2) L 

TSA/VR , L TUHC5-C and LAAB  (adjusted R2 = 0.32). The equations for these two models are: 

Equation 48 
L TSA/VR, L TU Daphnia and LAAB  

Count Ratio of Effect = [-0.318 + (0.3466 * L TSA/VR) + (0.1153 * L TU Daphnia) +      (0.4519 

* L AAB)] 

Equation 49 
L TSA/VR, L TU HC5-C and LAAB  

Count Ratio of Effect = [-0.4174 + (0.3240 * L TSA/VR) + (0.0913 * L TU HC5-C) +      (0.4087 

* L AAB)] 

 

5.2.2    Models based on All Available Pesticide Data 

Forty-four model combinations were possible with a TU and uncorrelated variables. Only two 
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these models can be considered to the best according as the AICc difference of less than two (see 

Table 18). Both models are statistically significant below p=0.05 and their adjusted R2s are 0.33 

and 0.36. However, models based only on TUs predictors are not included among the 999 models 

generated by the AIC. Upon generation it was found that these models were statistically 

insignificant.   

Inclusion of the four models that have an AICc difference of less than three enables the 

examination of some possible trends. All six models contain a structural property of the system; 

the best five have L TSA/V R and the sixth include L Volume. These structural properties are 

statistically significant contributors in all of the models. More effects are predicted in the systems 

that have smaller volumes and those with greater surface area to volume ratio.  

Aerobic aquatic biotransformation half-life is considered a statistically significant contributing 

factor in all of the seven models, and increased levels of effects are expected with increased L 

AAB values. Three models include log Kow, two others contain log Koc and the best two models 

(L TSA/V R, L TU HC5-C, log Kow and L AAB and L TSA/V R, L TU HC5-C, log Koc and L 

AAB) have one of these properties and in both cases they are considered as statistically 

significant contributors to the models at p-values below 0.05. However, they are only considered 

as a statistically significant contributor in one of the other three models. Increased Kow or Koc 

are expected to produce less observed algal effects. 

Both best approximating models according to the AICc difference of less than two have all of its 

variables as statistically significant contributing factors. Even though the predictive ability of 

these two models is relatively close (3% difference), the Akaike weight ratio indicates that the 

most likely model is more than twice better than the next probable model. Consequently, the most 
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likely model - L TSA/VR, L TUHC5-C, log Kow and LAAB (adjusted R2 = 0.36, see Equation 

50) can be considered as the best.  

Equation 50 
L TSA/VR, L TUHC5-C, log Kow and LAAB 

Count Ratio of Effect = [-0.3638 + (0.5026 * L TSA/VR) + (0.2137 * L TUHC5-C) +      (-0. 1227 

* log Kow) + (0.5466 * L AAB)] 

5.3  Modelling Algal Abundance Response to Herbicides 

Most pesticides have very specific modes of actions that enable them to kill their intended target 

and in many cases organisms that have similar physiology as the intended target species. 

Consequently, algae are much more sensitive towards herbicides than any other groups of 

pesticides. In fact, many of the insecticide studies reviewed for this research showed marked 

effects on invertebrates but none was seen with algae (Stephenson et al., 1989; Wendt-Rasch et 

al., 2003; Samsoe-Peterson et al., 2001; Hanazato and Kasai, 1995; Fliedner and Klein, 1996; 

etc.). Therefore, there is much to gain from predicting algal effects based only on herbicides. 

Given the small sample size of the herbicide dataset; 30 entries on seven herbicides (alachlor, 

atrazine, dichlobenil, hexazinone, metamitron, metribuzin, metsulfuron-methyl), data from a 

validation-training set method in addition to grouping all available entries were used to model 

algal effects. The validation sample consisted of alachlor, atrazine, hexazinone, metamitron, 

metribuzin and metsulfuron-methyl.  

5.3.1    Models based on Training Set Data 

One hundred and sixteen model combinations were possible with a TU and uncorrelated 

variables, ten can be considered to the best according as the AICc difference of less than or equal 
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to two (see Table 19). All ten models were statistically significant below p=0.05, however only 

four of the ten best approximate models can be validated using the data from the independent 

dataset. The adjusted R2s range from 0.18 to 0.32. 

All ten models have HC5-A as its predicting TU variable, in addition the L TU HC5-A (adjusted 

R2 = 0.18, see Equation 51) model is included among these ten. The models based only on HC5-C 

and Daphnia TUs are included among the 999 models generated by the AIC. However, these 

models were not of statistical significance and had similar adjusted R2s.  

Equation 51 
L TU HC5-A  

Count Ratio of Effect = [0.1233 + (0.1692 * L TU HC5-A)] 

Nine of the ten best approximating models contain a structural property of the system; five have L 

volume and the other four L TSA/V R. These structural properties are statistically significant 

contributors in five of the models. More effects are expected in the systems that have smaller 

volumes and those with greater surface area to volume ratio. L AAB, L WPHL and log Koc are 

all statistically significant contributors to the best approximating models.  

It seems as though HC5-A TU is the best for modelling effects of herbicides on algal species, and 

the structural properties of the system and L AAB are also important. The L TSA/V R, L TU 

HC5-A and L AAB (adjusted R2 = 0.32, see Equation 52) and L Volume, L TU HC5-A and L 

AAB (adjusted R2 = 0.31, see Equation 53) models are probably the best for the dataset. 
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Equation 52 
L TSA/V R, L TU HC5-A and L AAB 

Count Ratio of Effect = [-0.5734 + (0.3384 * L TSA/VR) + (0.1906 * L TUHC5-A) +      + 

(0.2793 * L AAB)] 

Equation 53 
L Volume, L TU HC5-A and L AAB 

Count Ratio of Effect = [-0.2546 + (-0.1261 * L Volume) + (0.2013 * L TUHC5-A) +      + 

(0.2522 * L AAB)] 

 

5.3.2    Model based on All Available Herbicide Data  

Sixty-five model combinations were possible with a TU and uncorrelated variables, eight of 

which can be considered to the best according as the AICc difference of less than two (see Table 

20). All of these models are statistically significant below p=0.05. The adjusted R2s fall within the 

range of 0.38 to 0.41. 

All eight models have HC5-A as its predicting TU variable, and the model with HC5-A (adjusted 

R2 = 0.26, see Equation 54) as the sole predictor was included among the 999 models generated 

by the AIC. However, the L HC5-A model did not have enough evidence supporting it is one of 

the best approximating models for this dataset. The models based on HC5-C and Daphnia TUs 

were not among the AIC model output and when modelled they were found to be statistically 

insignificant. 

Equation 54 
L TU HC5-A model  

Count Ratio of Effect = [0.1031 + (0.1930 * L TU HC5-A)] 
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The eight best approximating models all contain a structural property of the system; four have L 

Volume and the other four L TSA/V R. These structural properties are statistically significant 

contributors in six of the models. More effects are expected in the systems that have smaller 

volumes and those with greater surface area to volume ratio.  

L AAB is found in all of these best approximating models; it is considered statistically 

insignificant in four models, and more effects are expected with increased L AAB. Two models 

included L WPHL as an explanatory variable, two contained log Kow and one has log Koc. 

However, none of these properties can be considered as statistically significant contributors to the 

models.  

It must be noted that all the models can be grouped into four sets of pairs with the only differing 

variable being which structural property it contained. The results seem to indicate that HC5-A TU 

is the best for modelling effects of herbicides on algal species; and structural properties of the 

system along with L AAB are also vital for improving model predictions.  

The only best approximating models with all of its predictor variables as statistically significant 

contributing factors is L TSA/V R, L TU HC5-A and L AAB (adjusted R2 = 0.39, see Equation 

55) and there is no evidence to not accept this model as the best for this dataset. 

Equation 55 
L TSA/V R, L TU HC5-A and L AAB 

Count Ratio of Effect = [-0.6618 + (0.3036 * L TSA/VR) + (0.2105 * L TUHC5-A)       + (0.3268 

* L AAB)] 

5.4  Summary of Algal Species Modelling Results  

The best models for algal species abundance count ratio of effect can account for 31 to 39% of 
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the variance seen and the best models based on all pesticides and herbicides alone based models 

have similar predictive powers for the best training set models; the adjusted coefficients of 

determination ranged from 0.31 to 0.33. While the best model based on all available herbicide 

data (see Equation 55) is slightly better than the two best models based on all available pesticide 

data (see Equations 52 and 53). In addition, the former model is more parsimonious than the latter 

ones.  

Similar predictor variables are used for best models based on all pesticides and herbicides only, 

with the main difference being the predictor toxicity unit variable. Models that are based on all 

pesticides have HC5-C or Daphnia as the best predictor, while models based on herbicides alone 

have HC5-A. However, best models from both types of modelling show aquatic aerobic half-life 

and surface area to volume ratio improves model predictions.  

Given the relatively small sample size and poor representation of insecticides, impacts at the 

threshold concentration was calculated using the most predictive model - L TSA/V R, L TU HC5-

A and L AAB (adjusted R2 = 0.39, see Equation 55), which is based only on herbicide data. It 

must be noted that this model was not statistically validated under p=0.05, however the 

correlation analysis show significance at p=0.09. Since the entire database only has 32 count ratio 

entries on algal abundance response to herbicide treatments, and model is based on 30 entries, 

predicted impacts were calculated at 0.1 * TU HC-A using Equation 55.  

Low and high values or both low or high, or average values were paired for model input. The L 

AAB values used are 0.38, 2.28 and 1.33 and the L TSA/VR values used are -1.09, 2.10, and 

0.51. The L TSA/VR, L TU HC5-A and LAAB model predicted that no impacts to algae should 

be expected at or below 0.1 * TU HC5-A under the following conditions:- 
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1) herbicides resistant to AAB found in systems with low surface area to volume ratio (e.g., 

1.2: 1, which is characteristic of larger bodies of water).  

2) herbicides with very short half-lives (<2.4days) found in systems with high surface area to 

volume ratios (e.g., a ratio of 26)  

3) herbicides with very short half-lives (<2.4days) found in systems with low surface area to 

volume ratios (e.g., a ratio of 26)  

4) herbicides with an AAB of 21 days found in a system that has a surface area to volume 

ratio of about 6: 1. 

However, 0.1 * TU HC5-A threshold would allow 30% of algae species to be affected by 

herbicides that are persistent found in systems with high surface area to volume ratios (e.g., a 

ratio of 26, most likely characteristic of a small system). While, a threshold value of 1 * TU HC5-

A would not be able to protect algae from herbicides that resistant to AAB, leading to a 22% 

change in large systems and a 51% change in small systems.  

5.5  Discussion  

The results indicate that laboratory toxicity data alone and/or with other variables can create 

statistically significant models capable of predicting field effects. Unfortunately most of these 

models, including the best model, failed to be statistically validated with an independent dataset 

at p≤0.05, in addition statistical validation varied with differing size of validation set. This alludes 

to small sample size having played a huge role in the results obtained. However, it must be noted 

that the correlation between the impacts predicted by the best model equation (L TU HC5-A and 

L AAB, see Equation 55) is statistically significant at p=0.09.  
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The relative poor predictive power of the best models (adjusted R2s = 0.31 to 0.39) may also be 

attributed to small sample size, since the sub-datasets used for modelling contained a minimum of 

27 entries and a maximum of 41. The fact that all of the best models had three predictor variables 

may be caused by poor explanatory power of the variables used for modelling and/or biological 

factors such as competition, secondary effects, predation, generation time of the species and 

variation in species sensitivity.  

As mentioned previously data used for modelling contained statistically significant increases and 

decreases for both insecticides and herbicides (fenthion, cypermethrin, metribuzin, atrazine). This 

provides evidence that biological factors as well as toxicity played a major role in determining 

algal response, and it appears as though accounting for these species interactions can not be 

accomplished through the use of laboratory single species toxicity data. The possibility exists that 

the effects caused by the insecticides are largely secondary, probably stemming from reduction in 

algae feeders such as crustacea.  

Another factor that may have contributed to an overall poor fit was the method used to obtain the 

overall species impacts – the count ratio. The count ratio does not take into account the when the 

maximum effect was detected or its duration, and is dependent on the number of species the 

authors choose to report on. Of course, the variation in experimental design and tests used to 

ascertain impacts, may have affected how well modelling can be done. It is interesting to note that 

half of the count ratio entries are no effects which were even observed at high concentrations. It is 

quite possible that the fast generational times algae may have hidden any pesticide impacts.   

Even though the three to four insecticides (cypermethrin, fenthion, lambda-cyhalothrin and/or 

permethrin) in the dataset only represented about a quarter of the entries used for modelling, 
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models based on all pesticide data had a distinct preference for Daphnia or HC5-C toxicity 

predictor variable. While, models based only on herbicide data preferentially included the HC5-A 

variable. It must be noted that HC5-A and Daphnia or HC5-C toxicity values were not shown to 

be correlated (see Table 1).  

The best fate predictor variable - aerobic aquatic biotransformation half-life - is predicted to cause 

more algal species effects if the degradation time is longer, which is as expected because the 

pesticide would spend a longer time within the system. Unlike the other fate parameters, aerobic 

aquatic biotransformation half-life can be considered the laboratory equivalent to a field half-life 

test given it is done using both water and sediment. Also compared to the other fate parameters 

used (hydrolysis, photolysis, aerobic soil biotransformation), the aerobic aquatic 

biotransformation half-life values were more varied compared to having nearly many herbicides 

being resistant to degradation through those processes. However, the number of pesticides used 

for modelling is quite small (at most seven herbicides, four insecticides), and this may have 

played a major role in the selection of the most predictive fate parameter.   

Our models predict that 0.1 * TU HC5 – A should comfortably protect algal species against 

herbicides that have an aerobic aquatic biotransformation half-life of 21days or less, but probably 

not against those herbicides that are resistant to aerobic aquatic biotransformation and found in 

systems with high surface area to volume ratio (which is characteristic of smaller bodies of 

water). While the concentration at HC5 for algae would not protect against persistent herbicides, 

regardless of how large the system is. Our results contradict those of Brock et al. (2006) who 

claim that a threshold concentration at the median HC5 based on acute data or the lower-limit 

HC5 based on chronic data would be protective of algae. Like our study their conclusion is based 
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on very few herbicides (7) but given the possibility of small sample bias the percent affected at 

0.1 * TU HC5-A or 1 * TU HC5-A should be accepted with caution, since it appears that small 

sample size may have had an impact on model predictability and validity. However, the best 

model - L TU HC5-A and L AAB - did have an adjusted R2 = 0.39 (see Equation55) and was 

statistically validated at p=0.09.  

A threshold herbicide concentration at 0.1 * TU HC5-A should not impact algae species 

abundance under normal conditions and even in the worse case scenario. 
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Table 17:  Model selection by AIC for System Effect Change Ratio for all pesticides a validation-training set method. 
Var 1 Var 2 Var 3 Var 4 D

f 
∆ 
AICc 

Akaike 
weight 
ratio 

Adjusted  
R2 

L 
ratio 
Chi2 

p r N r 
(N=12) 

.5966 .5714 L TSA/V R L TU 
HC5 - C 

log Kow LAAB 4 0.00 1.00 0.37 17.03449 0.001903 

p=.024 

14 

p=.052 

.5243 .4992 * L TSA/V R L TU 
Daphnia  

LAAB  3 0.70 1.42 0.33 14.14525 0.002714 

p=.054 

14 

p=.098 

.4113 .3725 * L TSA/V R L TU 
HC5 - C 

LAAB  3 1.10 1.74 0.32 13.74489 0.003274 

p=.144 

14 

p=.233 

.5941 .5546 L TSA/V R L TU 
HC5 - C 

log Koc LAAB 4 1.21 1.83 0.34 15.82711 0.003260 

p=.025 

14 

p=.061 

.5085 .4905 L Volume L TU 
Daphnia  

LAAB  3 1.42 2.04 0.31 13.42203 0.003807 

p=.053 

15 

p=.105 

.3908 .3630 L Volume L TU 
HC5 - C 

LAAB  3 1.66 2.29 0.31 13.18608 0.004251 

p=.150 

15 

p=.246 

.5355 .5282 L Volume L TU 
HC5 - C 

log Kow LAAB 4 1.90 2.59 0.33 15.13261 0.004434 

p=.040 

15 

p=.078 

.1372 .1491 L TU HC5 - C    1 5.84 18.54 0.13 4.67968 0.030521 

p=.626 

15 

p=.644 
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Table 17:  Model selection by AIC for System Effect Change Ratio for all pesticides a validation-training set method. 
Var 1 Var 2 Var 3 Var 4 D

f 
∆ 
AICc 

Akaike 
weight 
ratio 

Adjusted  
R2 

L 
ratio 
Chi2 

p r N r 
(N=12) 

.2129 .2279 L TU Daphnia     1 6.83 30.39 0.09 3.69166 0.054685 

p=.446 

15 

p=.476 

N = 27  

*  proposed best model for dataset   

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

r – validation correlation coefficient 

LAAB – log-transformed aerobic aquatic biotransformation 

LASB - log-transformed aerobic soil biotransformation 

LHHL – log-transformed hydrolysis half-life 

L TSA/V R – log-transformed total surface area to volume ratio 

L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species  

LTU Daphnia – log-transformed toxic unit based on geometric 
means for Daphnia species 

L Vol - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic carbon absorption coefficient 

 log kow - log-transformed  octanol – water coefficient 
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Table 18:  Model selection by AIC for System Effect Change Ratio for all pesticides using all data. 
Var 1 Var 2 Var 3 Var 4 Df ∆ AICc Akaike 

weight 
ratio 

Adjusted 
R2 

L ratio 
Chi2 

p 

L TSA/V R L TU HC5 - C log Kow LAAB 4 0.00 1.00 0.36 22.46830 0.000162 
L TSA/V R L TU HC5 - C log Koc LAAB 4 1.78 2.43 0.33 20.68885 0.000365 
L TSA/V R L TU Daphnia  log Kow LAAB 4 2.14 2.92 0.32 20.32395 0.000431 
* L TSA/V R L TU Daphnia  LAAB  3 2.32 3.20 0.30 18.04251 0.000431 
L TSA/V R L TU Daphnia  log Koc LAAB 4 2.70 3.86 0.31 19.76732 0.000555 
L Volume L TU HC5 - A log Kow LAAB 4 2.93 4.33 0.31 19.53839 0.000616 
N = 41  

*  proposed best model for dataset   

Var – variable 

∆AICc - AICc difference 

Df – degree of freedom 

LAAB – log-transformed aerobic aquatic biotransformation 

L Volume - log-transformed volume 

LTSA/V R – log-transformed total surface area to volume ratio 

log Koc – log-transformed organic carbon absorption coefficient 

LTU Daphnia – log-transformed toxic unit based on geometric 
means 

log kow – log-transformed octanol-water coefficient for 
Daphnia species 

L TU HC5 – A – log-transformed toxic unit based on hazard 
concentration for 5% of algal species 

L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration  for 5% of crustacea species 
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Table 19:  Model selection by AIC for System Effect Change Ratio for all herbicides using a validation-training set method. 
Var 1 Var 2 Var 3 Var 4 Df ∆ AICc Akaike 

weight 
ratio 

Adjust
ed R2 

L ratio 
Chi2 

p r 

.5907 * L TSA/V R L TU HC5 - A LAAB  3 0.00 1.00 0.32 11.36622 0.009902 

p=.094 

.7205 * L Volume L TU HC5 - A LAAB  3 0.03 1.01 0.31 11.34055 0.010020 

p=.029 

.6080 L Volume L TU HC5 - A   2 0.19 1.10 0.27 8.91707 0.011579 

p=.082 

.6014 L TSA/V R L TU HC5 - A   2 0.60 1.35 0.26 8.51409 0.014164 

p=.087 

.7229 L TSA/V R L TU HC5 - A L WPHL LAAB 4 0.63 1.37 0.33 13.02633 0.011148 

p=.028 

.7183 L Volume L TU HC5 - A L WPHL LAAB 4 0.89 1.56 0.32 12.76370 0.012490 

p=.029 

.6240 L Volume L TU HC5 - A L WPHL  3 1.27 1.88 0.27 10.09903 0.017743 

p=.072 

.6231 L TSA/V R L TU HC5 - A L WPHL  3 1.60 2.22 0.26 9.76843 0.020641 

p=.073 

.6588 L TU HC5 - A    1 1.73 2.37 0.18 5.15861 0.023131 

p=.054 

.7512 L Volume L TU HC5 - A log Koc LAAB 4 1.82 2.48 0.29 11.83978 0.018583 

p=.020 
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Table 19:  Model selection by AIC for System Effect Change Ratio for all herbicides using a validation-training set method. 
Var 1 Var 2 Var 3 Var 4 Df ∆ AICc Akaike 

weight 
ratio 

Adjust
ed R2 

L ratio 
Chi2 

p r 

.6720 L TU Daphnia     1 4.90 11.59 0.04 1.98793 0.158557 

p=.047 

.6257 L TU HC5 - C    1 4.94 11.84 0.04 1.94575 0.163046 

p=.071 

N = 21  

*  proposed best model for dataset   

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

r – validation correlation coefficient 

LAAB – log-transformed aerobic aquatic biotransformation 

LTSA/V R – log-transformed total surface area to volume ratio 

LTU Daphnia – log-transformed toxic unit based on geometric mean for Daphnia species 

L TU HC5 – A – log-transformed toxic unit based on hazard 
concentration for 5% of algal species 

L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

L Volume - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic carbon absorption 
coefficient 
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Table 20:  Model selection by AIC for System Effect Change Ratio for herbicides using all data. 
Var 1 Var 2 Var 3 Var 4 Df ∆ AICc Akaike 

weight 
ratio 

Adjusted 
R2 

L ratio 
Chi2 

p 

L TSA/V R L TU HC5 - A L WPHL LAAB 4 0.00 1.00 0.41 20.27134 0.000441 

* L TSA/V R L TU HC5 - A LAAB  3 0.00 1.00 0.39 18.11648 0.000416 

L Volume L TU HC5 - A LAAB  3 0.12 1.06 0.39 17.99689 0.000440 

L Volume L TU HC5 - A L WPHL LAAB 4 0.52 1.29 0.40 19.75438 0.000558 

L Volume L TU HC5 - A log Koc LAAB 4 0.93 1.59 0.39 19.34362 0.000673 

L TSA/V R L TU HC5 - A log Koc LAAB 4 1.33 1.94 0.38 18.94870 0.000804 

L Volume L TU HC5 - A log Kow LAAB 4 1.37 1.97 0.38 18.91057 0.000818 

L TSA/V R L TU HC5 - A log Kow LAAB 4 1.70 2.34 0.38 18.57349 0.000953 

L TU HC5 - A    1 3.80 6.67 0.26 10.03538 0.001536 

N = 30  

*  proposed best model for dataset   

Var – variable 

Df – degree of freedom 

∆AICc - AICc difference 

LAAB – log-transformed aerobic aquatic biotransformation 

LTSA/V R – log-transformed total surface area to volume ratio 

LTU Daphnia – log-transformed toxic unit based on geometric mean for Daphnia species 

 

L TU HC5 – A – log-transformed toxic unit based on hazard 
concentration for 5% of algal species 

L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

L Volume - log-transformed volume 

L WPHL – log-transformed water photolysis half-life 

log Koc – log-transformed  organic carbon absorption 
coefficient 
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Figure 7:  The best algae model (based on 30 herbicide entries) – L TSA/VR, L TU HC5-A and L AAB. 

Predicted vs. Observed Values
Dependent variable: count ratio change

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Predicted Values

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
bs

er
ve

d 
V

al
ue

s

95% confidence  

LAAB – log-transformed aerobic aquatic biotransformation 

LTSA/V R – log-transformed total surface area to volume ratio 

L TU HC5 – A – log-transformed toxic unit based on hazard concentration for 5% of algal species 
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6 GENERAL DISCUSSIONS AND CONCLUSIONS 

6.1  General Discussions 

This research generated predictive linear models for three major groups of freshwater organisms 

– crustacea, insecta and algae. Crustacea analyses were done at three levels - all crustacea species, 

cladocera and copepods; the latter two categories make up a large proportion of the freshwater 

invertebrates. Modelling was done using data from lentic systems and reflects abundance changes 

(expressed as count ratio of effects and abundance change ratio) caused by single applications of 

pesticides.  

6.1.2     Predictability of Single Species Laboratory Toxicity Data 

The results of this study show that laboratory single species toxicity data such as geometric 

means of Daphnia species or in the form of a Hazard Concentration for five percent of the species 

(crustacea - HC5-C, insecta – HC5-I, algae – HC5-A) are able to produce statistically significant 

models capable of predicting field effects of pesticides exposure on abundance within lentic 

systems. The use of HC5 values were preferred to the single species values, with the sole 

exception being for the count ratio of effects for crustacea species (Daphnia toxicity units were 

preferred). Since no alga or insect single species toxicity based units were used, this conclusion 

therefore only applies to crustacea and insects. Most of the models that are based only on the 

toxicity units are poor predictors and more predictive models are produced in combinations with 

fate (hydrolysis half-life, water photolysis half-life, aerobic aquatic biotransformation half-life, 

aerobic soil biotransformation half-life), physico-chemical (log Kow, Koc) or system properties 

(volume, surface area to volume ratio) variables.  

Of the three groups examined (crustaceans, algae and insects), crustacea analyses produced the 



 

NAESI Technical Series No. 3-31 
Page 135 

most predictive models with best models having adjusted R2s of 0.55 (cladocera – L TU HC5-C 

and L WPHL), 0.62 (copepoda L TU HC5-C and L AAB) and 0.55 (crustacea species – L TU 

Daphnia and log Kow and L HHL); while best insecta and algae models have an adjusted R2 of 

0.29 and 0.39 respectively. However, the range of predictive strength varied tremendously within 

each group and sub-group of organisms. All the best models for crustacea were validated using an 

independent dataset, but this proved to be problematic for insecta and algal models, many models 

failed the validation tests, while there was inadequate data to validate all the best approximating 

insecta family models. However, it must be noted that the best insect model was statistically 

validated, while the best algal model shows statistical significance for validation at p=0.09.  

This validation problem and relatively poor predictive ability of algal and insect models may 

possibly have been caused by small sample size. Small sample size, coupled with fish presence, 

might have also contributed to the inconsistent results (e.g., varied effects of fate parameter on 

toxicity) obtained for cladocera. Also, the poor performance of algal and insect models likely 

results from to the inadequacy of the selected laboratory predictor variables to explain the field 

responses observed. While, laboratory toxicity data do not take into account species interactions 

and abiotic environmental factors, thereby creating the tendency to underestimate pesticide 

induced effects; similar laboratory toxicity values were able to yield strong models for 

crustaceans. So the poor predictive ability of laboratory-derived toxicity data for algae and insects 

probably has more to do with insufficient sampling of these diverse taxonomic groups to 

adequately predict their susceptibility. One reason for the lack of data may be attributed to there 

being few species for which standard tests have been developed, in addition regulatory agencies 

do not insist on single species laboratory toxicity data for aquatic insects, but instead use Daphnia 

values to extrapolate protectiveness.   The results show that insect models predict better using 
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crustacean-based toxicity units, which therefore seems to indicate that characterisation of insect 

toxicity data is rather poor.  

6.1.3  Pesticide Grouping and Fish Presence  

The influence of pesticide grouping on the predictive strength of crustacea and algae models 

(only insecticide data were used for insect models) is evident but is somewhat quite minimal; this 

may be due to the under representation of those pesticides which the organism groups are 

considered to be less sensitive to.  

However, the crustacea models show that fish presence is a greater influence to model 

predictability than pesticide grouping; the coefficients of determination for the best models are 

better by 10 to 20% in those models derived from data without fish and all the best models come 

from fish-free insecticide data. These results therefore support the recommendation of the 

workshop on Community Level Aquatic System Studies – Interpretation Criteria (CLASSIC) 

held during May –June, 1999 in Germany - fish should not be included in a micro- or meso- cosm 

study if effects on invertebrates are important endpoints.  

6.1.4  System Structural Properties 

Even though volume or surface area to volume ratio is included in some of the best 

approximating models for algae, insecta and crustacea, and is a statistically significant contributor 

in some cases, these structural variables were generally not included in any of the best models 

except for algae (surface area to volume ratio).  

However, an interesting finding in our study is that the best copepod models from fish-present 

and fish-free combined data included a structural property, but best model from the fish-free data 

did not require the inclusion of a structural property. The results also indicate that more effects 
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are expected in smaller systems or those with larger surface area to volume ratios (which is 

usually associated with smaller systems). The reason for inclusion of a structural property is 

probably because secondary effects caused by fish are more pronounced in the smaller systems. 

6.1.5  Physico-chemical Properties  

Both physico-chemical properties collected for analyses – Kow and Koc – relate to the 

hydrophobicity of the pesticide. Like system structural properties these variables are included in 

some of the best approximating models and are even statistically significant contributors to a few. 

However, the only best model that used a physico-chemical property (Kow) came from crustacea 

species data. 

Worthy of note, is that the few models that contained Kow as a statistically significant contributor 

indicate that hydrophobic insecticides are a bigger threat to crustacea species (made up of 65% 

cladocera and 25% copepoda species), while copepoda and cladocera models suggest that 

pesticides that are hydrophilic will cause more reductions. The crustacea species results are 

similar to those of Mohlenberg et al. (2001) who found that toxicity for copepoda and cladocera 

is higher for those insecticides that are hydrophobic.  

6.1.6  Fate Properties  

The best copepoda, insecta and algae models all have aerobic aquatic biotransformation half-life 

as a predictor variable; while the best models for cladocera and crustacea species (65% of which 

belong to the order cladocera) include water photolysis half-life and hydrolysis half-life 

respectively. In addition, the copepoda, insecta and algae best models all indicate that more 

impacts are likely to occur with persistent pesticides; while the cladocera and crustacea species 

models suggest that more impacts are predicted to occur when exposed to those chemicals that 



 

NAESI Technical Series No. 3-31 
Page 138 

undergo rapid degradation by hydrolysis.  

While it is probably possible that pesticides degrade into compounds that are more toxic than the 

parent material, hence pesticides with shorter half-lives would be more toxic; unfortunately this 

subject matter has been under-researched and several organophosphorus pesticides studies report 

that these degradation products are more, less or similar to the parent in terms of its toxicity 

(Pehkonen and Zhang, 2002). The possibility also exists that some pesticides (like 

organothiophosphates, which were well-represented in the dataset used for modelling) need to be 

transformed to be toxic. However, a test to decide whether possible potentiation of pesticides 

affected toxicity did not provide support for this hypothesis since both metabolite-mediated and 

directly toxic insecticides produced models with shorter hydrolysis half-lives leading to more 

effects.  

In essence, these results reiterate the fact that the actual system characteristics and application 

method of the pesticide can greatly influence the toxic effects seen, since 1) hydrolysis is affected 

by temperature and pH; 2) photolysis can be accelerated or inhibited depending on depth and 

availability of sunlight; and 3) aerobic aquatic biotransformation is influenced by the physico-

chemical properties of the system.  

6.1.7   Protection being offered at the Standard Threshold Limits  

Our results show that a threshold level of 0.01 * Daphnia L(E)C50 can only protect against 

hydrophilic (or intermediate hydrophobic) insecticides that are resistant to hydrolysis 

degradation, otherwise at least 37% of crustacea species to be affected. Insecticides with a half-

life of about 35.5 days will cause about a 50% decrease while those that undergo rapid hydrolysis 

such as organophosphates can lead to as much as 63% of species being affected. Considering that 
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only statistically significant changes were regarded as effects and that most studies only produced 

statistical significance when there was a change of approximately 70% in magnitude, these losses 

may be considered unacceptable. This contradicts Brock et al. (2000a) who support that a 

threshold level at 0.01 * Daphnia LC50 will be protective of crustacea. 

Although, Daphnia toxicity unit based models are not considered as the best for the other groups 

or sub-groups of organisms, it is worthy to note that with a few exceptions (temephos, azinphos-

methyl) all other insecticides in our database show that 0.1 * HC5-C values are between 1.28 

(chlorpyrifos) and 246 (lindane) times more conservative than the 0.01 * Daphnia values.  

Threshold levels that are set at 0.1 * HC5 based on acute data, appear to be protective of 

cladocera, copepoda, insects and algae, except under worse case scenarios. Cladocera can be at 

risk (abundance decreased by as much as 74%) when exposed to insecticides which have short 

water photolysis half-lives (such as pyrethroids), while an insecticide that lingers within the 

ecosystem can cause a 19% change in copepoda abundance and affect 24% of insecta families. 

Persistent herbicides are predicted to affect 30% of algal species if they contaminate small 

systems. A 19% abundance change in copepod may go undetected and be possibly biologically 

insignificant but having almost a quarter of insect families or almost a third of algal species 

affected should not be. 

Brock et al. (2006) suggest that using a medium HC5 based on acute invertebrate toxicity data 

should be protective; however the best models produced in this research do not fully support this. 

Our models suggest using a HC5 threshold concentration would allow any insecticide (most 

likely pyrethroids and organophosphates) with a water photolysis half-life of less than 12 days to 

cause at least a 50% change in cladocera abundance. However, these impacts should be short-
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lived since these insecticides degrade rapidly and this group of organisms have fast generation 

times.  

The best copepoda model predicts that while the HC5 threshold concentration would not allow an 

insecticide with an aerobic aquatic biotransformation half-life of less than 27days to impact 

copepoda abundance, a persistent insecticide could lead to as much as a 79% decrease. The 

insecta model predicts that an insecticide with a half-life over 10 days will affect 27% of families, 

while the algal model predicts that a persistent herbicide can affect 22% (large systems) to 51% 

(small systems) of algal species. Given the general phase out of persistent pesticides a threshold 

at the HC5 concentration may be protective of copepods and algae; however it may not be for 

insects. But, given the poor predictive power (adjusted R2 = 0.29) and the fact that the models did 

not contain responses at very low toxicity units, it can not be conclusively stated that this 

threshold is not protective of aquatic insects.  

Aquatic communities are dynamic and consequently a certain amount of change is expected. So 

in order to decipher whether these predicted changes at the currently used threshold levels are a 

matter of concern would be based on the normal changes that are expected within the community 

at a given time and, of course, on the potential for system recovery – which was not looked at in 

this study. 

6.2  Conclusions 

Acute laboratory single species toxicity data as geometric L(E)C50s or Hazard Concentrations 

can produce models capable of explaining the effects of pesticides on crustacea, insects and algae 

in ecosystem studies. Despite the data hungry and labour intensive nature of attaining Hazard 

Concentrations values, it seems worthwhile since they were shown to be better predictors than the 
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geometric mean single species values. Crustacea models are the most predictive, followed by 

algae and then insects. However, small sample size may have had a role in model prediction, 

selection of variables and validation with an independent dataset. In addition, characterisation of 

insect toxicity data seems rather poor.  

The addition of fate variables improved model predictions and proved to be invaluable in 

explaining the responses in the studies, since they help to pinpoint under what conditions more 

effects can occur and to some extent which types of pesticides pose greater threats to which 

groups of organisms. Cladocera are possibly most sensitive to organothiophosphates and 

pyrethroids, while insects and copepods are more sensitive to more persistent insecticides. Algae 

are more affected by herbicides that are persistent; and with the exception of copepoda, all other 

groups – crustacea species, cladocera, insecta, algae – are most affected by hydrophobic 

chemicals.  

Use of data from ecosystems studies that contained fish to make predictions about the likely 

impacts of pesticides on crustaceans is not recommended, since fish presence seems to confound 

toxicity effects and leads to less predictive models. However, there may be something gained 

from just using the impacts of herbicides or insecticides on their most sensitive species group 

(algae for herbicides, crustacea for insecticides).  

A threshold value of 0.01 * Daphnia L(E)C50 does not appear to offer enough protection to 

crustaceans; however a concentration at 0.1 times the median Hazard Concentration for five 

percent of crustacea based on acute toxicity data can protect copepoda (except against persistent 

insecticides) and cladocera (except against insecticides with fast water photolysis half-lives, like 

pyrethroids). This threshold concentration can also offer protection for insects, except against 
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extremely persistent insecticides; while a threshold value at the 0.1 times the median Hazard 

Concentration for five percent of algae would sufficiently protect algae, except against persistent 

herbicides in small aquatic systems. While algae and copepods can probably still be protected 

(given the phasing out of persistent pesticides) at the median Hazard Concentration values for 

five percent of algae or crustacea respectively, it is quite inadequate for cladocera and aquatic 

insects.  

In conclusion, the use of single species laboratory toxicity data can be used to predict actual field 

effects, but there seems to be poor characterisation of insecta data. Model predictability is better 

when a hazard concentration value derived from species sensitivity distribution is used. Single 

species laboratory toxicity data by themselves are poor predictors of ecosystem effects, therefore 

using a tool or attempting to apply thresholds of acceptability without taking into account fate 

characteristics could severely underestimate the effects of worse case scenarios and result in poor 

predictability of effects.  
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9 APPENDICES 

APPENDIX A:  Data used to model Crustacea species responses  
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atrazine H 2.0512 0.0792 100 0 F -2.3507 -1.2307 2.5 1.939 1.6435 2.525 2.2782 2.301 Hamilton et 
al., (1988) 

azinphos-methyl I   0.2 0.06 NF -0.7449 0.1549 2.96 2.8974 1.5051 0.5046 0.557 1.5682 

azinphos-methyl I   1 0.22 NF -0.0459 0.8539 2.96 2.8974 1.5051 0.5046 0.557 1.5682 

azinphos-methyl I   4 0.5 NF 0.5562 1.4559 2.96 2.8974 1.5051 0.5046 0.557 1.5682 

azinphos-methyl I   20 0.83 NF 1.2551 2.1549 2.96 2.8974 1.5051 0.5046 0.557 1.5682 

Sierszen and 
Lozano 
(1998) 

bendiocarb I 5.301  24 0.5 NF -0.0852 1.7106 1.72 2.5855 0.2586 1.1551 0.8733 0.5315 Lahr et al., 
(2000) 

carbaryl I 1.4969 0.3444 1000 0.75 NF -0.0247 2.6397 4.5 5.0646 1.2788 1.6812 1.9418 1.3054 Hanazato 
and Yasuno 
(1998) 

carbendazim F 0.4771 0.8692 2.17 0.75 NF -2.5158 -0.7631 1.38 2.4735 2.5051 3.0394 1.7853 3.2613 

carbendazim F 0.4771 0.8692 20.67 0.75 NF -1.5369 0.2157 1.38 2.4735 2.5051 3.0394 1.7853 3.2613 

carbendazim F 0.4771 0.8692 226 1 NF -0.4981 1.2545 1.38 2.4735 2.5051 3.0394 1.7853 3.2613 

Slijkerman 
et al., (2004) 

carbofuran I 0.1847 0.7451 6.3 1 NF -0.7429 1.5451 1.52 1.4065 1.0414 0.7482 0.301 -0.168 

carbofuran I 0.1847 0.7451 22.5 1 NF -0.1901 2.0979 1.52 1.4065 1.0414 0.7482 0.301 -0.168 

Wayland 
(1991) 
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carbofuran I   9 1 NF -0.588 1.7 1.52 1.4065 1.0414 0.7482 0.301 -0.168 

carbofuran I   14 1 NF -0.3961 1.8919 1.52 1.4065 1.0414 0.7482 0.301 -0.168 

carbofuran I   32 1 NF -0.0371 2.2509 1.52 1.4065 1.0414 0.7482 0.301 -0.168 

carbofuran I 0.1038 0.7938 6.3 1 NF -0.7429 1.5451 1.52 1.4065 1.0414 0.7482 0.301 -0.168 

carbofuran I 0.1038 0.7938 22.5 1 NF -0.1901 2.0979 1.52 1.4065 1.0414 0.7482 0.301 -0.168 

Wayland and 
Boad (1990) 

chlorpyrifos I -0.2147 0.8831 5 1 NF 0.8942 2 4.7 3.688 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos I -0.2147 0.8831 35 1 NF 1.7393 2.8451 4.7 3.688 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos I -0.2147 0.8831 35 1 NF 1.7393 2.8451 4.7 3.688 2.2022 1.4771 1.7076 1.8573 

Brock et al., 
(1992) 

chlorpyrifos I 1.7404 0.3838 0.51 0.8 F -0.0972 1.0086 4.7 3.688 2.2022 1.4771 1.7076 1.5459 

chlorpyrifos I 1.7404 0.3838 6.29 0.8 F 0.9939 2.0997 4.7 3.688 2.2022 1.4771 1.7076 1.5459 

chlorpyrifos I 1.7404 0.3838 32 0.8 F 1.7004 2.8062 4.7 3.688 2.2022 1.4771 1.7076 1.5459 

Siefert et al., 
(1989) 

chlorpyrifos I 1.7782 0.721 0.1 0.33 NF -0.8048 0.301 4.7 3.688 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos I 1.7782 0.721 0.9 0.67 NF 0.1495 1.2553 4.7 3.688 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos I 1.7782 0.721 6 1 NF 0.9734 2.0792 4.7 3.688 2.2022 1.4771 1.7076 1.8573 

Van den 
Brink et al., 
(1996) 
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chlorpyrifos I 1.7782 0.721 44 1 NF 1.8387 2.9445 4.7 3.688 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos I 0.9731 0.8136 1.7 1 NF 0.4257 1.5315 4.7 3.688 2.2022 1.4771 1.7076 1.1159 

chlorpyrifos I 0.9731 0.8136 16.5 1 NF 1.4127 2.5185 4.7 3.688 2.2022 1.4771 1.7076 1.1159 

Lucassen 
and 
Leeuwangh 
(1994) 

cyfluthrin I 0.6532 0.5587 0.22 1 F -0.1715 2.0882 6 4.8981 1.7738 1.0864 1.6681 2.2856 

cyfluthrin I 0.6532 0.5587 1.8 1 F 0.7413 3.0011 6 4.8981 1.7738 1.0864 1.6681 2.2856 

Heimbach et 
al., (1992) 

cypermethrin I -0.699 1.0752 0.08 0.8 NF -1.7957 1.0795 6.6 4.627 1.7782 0.2782 1.7762 0.2553 

cypermethrin I -0.699 1.0752 0.3 1 NF -1.2217 1.6535 6.6 4.627 1.7782 0.2782 1.7762 0.2553 

cypermethrin I -0.699 1.0752 1.6 1 NF -0.4947 2.3805 6.6 4.627 1.7782 0.2782 1.7762 0.2553 

cypermethrin I -0.699 1.0752 3.2 1 NF -0.1937 2.6816 6.6 4.627 1.7782 0.2782 1.7762 0.2553 

Wendt-
Rasch 
(2003) 

deltamethrin I 5.301  0.64 0.25 NF -0.0247 2.6397 4.5 5.0646 1.2788 1.6812 1.9418 1.3054 Lahr et al., 
(2000) 

diflubenzuron I 1.0086 0.7435 10 1 NF 0.3683 1.5062 3.89 3.8663 0.6021 1.4472 1.0534 1.9243 

diflubenzuron I 5.301  10.4 0.86 NF 0.3853 1.5233 3.89 3.8663 0.6021 1.4472 1.0534 1.9243 

Ali and Kok-
Yokomi 
(1989) 

esfenvalerate I   0.01 0.39 F -1.5886 0.122 6.22 4 1.8692 1 1.7182 3.2613 

esfenvalerate I   0.08 0.5 F -0.6855 1.0251 6.22 4 1.8692 1 1.7182 3.2613 

Lozano et 
al., (1992) 
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esfenvalerate I   0.2 0.44 F -0.2876 1.423 6.22 4 1.8692 1 1.7182 3.2613 

esfenvalerate I 0.9731 0.7451 1 0.72 F 0.4114 2.122 6.22 4 1.8692 1 1.7182 3.2613 

esfenvalerate I 0.9731 0.7451 5 0.66 F 1.1104 2.821 6.22 4 1.8692 1 1.7182 3.2613 

fenitrothion I 5.301  80 0.57 NF 0.8061 2.7653 3.43 3.0519 1.5563 0.5623 1.1021 2.2695 Lahr et al., 
(2000) 

fenthion I 0.1761 0.8615 23 0.75 NF 1.5693 2.5373 4.84 3.2553 0 -1.983 0.7526 1.7544 

fenthion I 0.1761 0.8615 175 1 NF 2.4506 3.4186 4.84 3.2553 0 -1.983 0.7526 1.7544 

Hanazato 
and Kasai 
(1995) 

glufosinate-
ammonium 

H 1.2586 0.4942 1 0 NF -5.841 -3.6543 -4.81 1.8412 1.0837 0.832 0.4771 2.5623 

glufosinate-
ammonium 

H 1.2586 0.4942 10 0 NF -4.841 -2.6543 -4.81 1.8412 1.0837 0.832 0.4771 2.5623 

glufosinate-
ammonium 

H 1.2586 0.4942 100 0 NF -3.841 -1.6543 -4.81 1.8412 1.0837 0.832 0.4771 2.5623 

glufosinate-
ammonium 

H 1.2586 0.4942 1000 1 NF -2.841 -0.6543 -4.81 1.8412 1.0837 0.832 0.4771 2.5623 

glufosinate-
ammonium 

H 1.2586 0.4942 10000 1 NF -1.841 0.3457 -4.81 1.8412 1.0837 0.832 0.4771 2.5623 

Faber et al., 
(1998) 

hexazinone H 1.9469 0.1303 32 0 NF -3.7913 -2.658 1.2 1.4232 2.2908 3.0394 1.7782 3.2613 

hexazinone H 1.9469 0.1303 102 0 NF -3.2878 -2.1546 1.2 1.4232 2.2908 3.0394 1.7782 3.2613 

hexazinone H 1.9469 0.1303 1106 1 NF -2.2527 -1.1194 1.2 1.4232 2.2908 3.0394 1.7782 3.2613 

Thompson et 
al., (1993) 
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hexazinone H 1.9469 0.1303 11276 1 NF -1.2443 -0.111 1.2 1.4232 2.2908 3.0394 1.7782 3.2613 

lindane I 0 0.7482 4 0.33 NF -2.4499 0.941 3.5 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I 0 0.7482 8 0.33 NF -2.1489 1.2421 3.5 3.0414 2.9912 3.0394 2.3068 2.2375 

Peither et al., 
(1996) 

lindane I 0 0.7482 16 0.33 NF -1.8479 1.5431 3.5 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I 0 0.7482 24 0.33 NF -1.6718 1.7192 3.5 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I 0 0.7482 32 0.33 NF -1.5468 1.8441 3.5 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I 0 0.7482 64 0.33 NF -1.2458 2.1452 3.5 3.0414 2.9912 3.0394 2.3068 2.2375 

  

linuron H 0.0086  1000 1 NF 0.3501 1.3771 3 2.3918 1.6902 1.6902 1.6243 3.2613 Stephenson 
and Kane 
(1984) 

methabenzthiazuro
n 

H 0.7782   10 0 NF -2.9585 -1.7507 2.64 3.2916       2.5623 

methabenzthiazuro
n 

H 0.7782   21 0 NF -2.6363 -1.4285 2.64 3.2916       2.5623 

methabenzthiazuro
n 

H 0.7782   43 0 NF -2.3251 -1.1172 2.64 3.2916       2.5623 

methabenzthiazuro
n 

H 0.7782   89 0 NF -2.0092 -0.8013 2.64 3.2916       2.5623 

methabenzthiazuro
n 

H 0.7782  184 0.5 NF -1.6937 -0.4859 2.64 3.2916    2.5623 

Wellmann et 
al., (1998) 



 

NAESI Technical Series No. 3-31 
Page 162 

APPENDIX A:  Data used to model Crustacea species responses  
C

om
m

on
 n

am
e 

T
yp

e 

L
 V

ol
um

e 

L
 T

SA
/V

 R
 

E
ff

ec
t C

on
ce

nt
ra

tio
n 

(u
g/

l) 

co
un

t r
at

io
 

ch
an

ge
 

Fi
sh

 

L
 T

U
 D

ap
hn

ia
 

L
 T

U
 H

C
5 

- C
 

lo
g 

K
ow

 

lo
g 

K
oc

 

L
A

SB
 

L
 W

PH
L

 

L
A

A
B

 

L
 H

H
L

 

So
ur

ce
 

methabenzthiazuro
n 

H 0.7782  380 0.5 NF -1.3788 -0.1709 2.64 3.2916    2.5623 

methabenzthiazuro
n 

H 0.7782  787 0.5 NF -1.0626 0.1453 2.64 3.2916    2.5623 

methabenzthiazuro
n 

H 0.7782  1629 0.5 NF -0.7466 0.4612 2.64 3.2916    2.5623 

methabenzthiazuro
n 

H 0.7782  3371 0.5 NF -0.4308 0.7771 2.64 3.2916    2.5623 

methyl parathion I 0.699 0.415 100 1 F 2.0503 2.6875 3 3.6776 1.0106 1 0.6128 1.3222 Crossland 
(1984) 

methyl parathion I 1.6021 0.5119 8 0.2 F 0.9534 1.5906 3 3.6776 1.0106 1 0.6128 1.3222 

methyl parathion I 1.6021 0.5119 29 0.2 F 1.5127 2.1499 3 3.6776 1.0106 1 0.6128 1.3222 

Crossland 
(1988) 

methyl parathion I 0.0086  2500 1 NF 3.4482 4.0854 3 3.6776 1.0106 1 0.6128 1.3222 Stephenson 
and Kane 
(1984) 

metribuzin H -0.3565 0.8927 1.8 0 NF -3.8858 -3.0952 1.6 1.2304 2.25 -0.747 2 3.2613 

metribuzin H -0.3565 0.8927 5.6 0 NF -3.3929 -2.6022 1.6 1.2304 2.25 -0.747 2 3.2613 

metribuzin H -0.3565 0.8927 18 0 NF -2.8858 -2.0952 1.6 1.2304 2.25 -0.747 2 3.2613 

metribuzin H -0.3565 0.8927 56 0.67 NF -2.3929 -1.6022 1.6 1.2304 2.25 -0.747 2 3.2613 

metribuzin H -0.3565 0.8927 180 0.67 NF -1.8858 -1.0952 1.6 1.2304 2.25 -0.747 2 3.2613 

Brock et al., 
(2004) 



 

NAESI Technical Series No. 3-31 
Page 163 

APPENDIX A:  Data used to model Crustacea species responses  
C

om
m

on
 n

am
e 

T
yp

e 

L
 V

ol
um

e 

L
 T

SA
/V

 R
 

E
ff

ec
t C

on
ce

nt
ra

tio
n 

(u
g/

l) 

co
un

t r
at

io
 

ch
an

ge
 

Fi
sh

 

L
 T

U
 D

ap
hn

ia
 

L
 T

U
 H

C
5 

- C
 

lo
g 

K
ow

 

lo
g 

K
oc

 

L
A

SB
 

L
 W

PH
L

 

L
A

A
B

 

L
 H

H
L

 

So
ur

ce
 

metsulfuron methyl H 1.9469 0.1303 10 0 NF -4.1761 -2.9682 0.018 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron methyl H 1.9469 0.1303 100 0 NF -3.1761 -1.9682 0.018 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron methyl H 1.9469 0.1303 500 0 NF -2.4771 -1.2693 0.018 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron methyl H 1.9469 0.1303 1000 0 NF -2.1761 -0.9682 0.018 0.8129 2.0478 3.0394 1.6392 3.2613 

Thompson et 
al., (1993) 

permethrin I 2.0969 0.0792 0.5 0.67 NF -0.611 1.5491 6.1 4.6114 1.4771 -0.903 1.5125 3.2613 

permethrin I 2.0969 0.0792 5 0.89 NF 0.389 2.5491 6.1 4.6114 1.4771 -0.903 1.5125 3.2613 

Kaushik et 
al., (1987) 

permethrin I 0.4771 0.6561 0.75 0.67 NF -0.4349 1.7252 6.1 4.6114 1.4771 -0.903 1.5125 3.2613 

permethrin I 0.4771 0.6561 1.5 1 NF -0.1338 2.0263 6.1 4.6114 1.4771 -0.903 1.5125 3.2613 

Yasuno et 
al., (1988) 

phorate I 1.6532 0.4914 23 1 NF 0.8282 3.5454 3.92 2.6575 0.4771 0.0414 -0.34 0.5051 

phorate I 1.6532 0.4914 45 1 NF 1.1197 3.8369 3.92 2.6575 0.4771 0.0414 -0.34 0.5051 

Dieter 
(1996) 

pyridaben I 1.2304 0.534 1.06 0.2 F 0.2057 2.0162 6.1 4.8451 2.1145 -1.681 1.8469 3.2613 

pyridaben I 1.2304 0.534 4.85 0.4 F 0.8661 2.6766 6.1 4.8451 2.1145 -1.681 1.8469 3.2613 

pyridaben I 1.2304 0.534 50.98 0.6 F 1.8878 3.6983 6.1 4.8451 2.1145 -1.681 1.8469 3.2613 

Rand et al., 
(2000) 
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rotenone F 2.3927  6 1 F -0.4515 0.4752 4.16 4 0.4771  0.9879 0.1139 Beal and 
Anderson 
(1993) 

rotenone F 4.8651 0.179 3000 0.83 NF 2.2475 3.1742 4.16 4 0.4771  0.9879 0.1139 Melaas et 
al., (2001) 

tebufenozide I 1.7959 0.2041 70 0.33 F -1.1435 0.486 4.25 2.6799 2.4344 2.5136 2 3.0145 

tebufenozide I 1.7959 0.2041 130 0.67 F -0.8746 0.7549 4.25 2.6799 2.4344 2.5136 2 3.0145 

tebufenozide I 1.7959 0.2041 330 0.67 F -0.4701 1.1594 4.25 2.6799 2.4344 2.5136 2 3.0145 

tebufenozide I 1.7959 0.2041 660 0.67 F -0.169 1.4605 4.25 2.6799 2.4344 2.5136 2 3.0145 

Kreutzweise
r et al., 
(1995) 

tebufenozide I 1.3979 0.4472 9 0.38 NF -2.0343 -0.4048 4.25 2.6799 2.4344 2.5136 2 3.0145 

tebufenozide I 1.3979 0.4472 157 0.25 NF -0.7927 0.8368 4.25 2.6799 2.4344 2.5136 2 3.0145 

Kruetzweise
r and Faber 
(1999) 

temephos I 0.9731 0.7451 58.6 1 NF 3.7265 3.4887 4.91 5 1.4771 1.176 1.2355 2.6628 

temephos I 0.9731 0.7451 77.6 1 NF 3.8485 3.6106 4.91 5 1.4771 1.176 1.2355 2.6628 

Hanazato et 
al., (1989) 

triazamate I -0.1024 0.7782 0.08 0 NF -3.4184 -1.1758 2.15 3.0039   2.1761     

triazamate I -0.1024 0.7782 0.228 0 NF -2.9636 -0.721 2.15 3.0039   2.1761     

triazamate I -0.1024 0.7782 0.852 0 NF -2.3911 -0.1485 2.15 3.0039   2.1761     

Toy (1994) 
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triazamate I -0.1024 0.7782 1.885 0 NF -2.0462 0.1964 2.15 3.0039   2.1761     

triazamate I -0.1024 0.7782 5.5 0 NF -1.5812 0.6615 2.15 3.0039  2.1761   

KEY 

Type – type of pesticides  
H  - herbicide 
I – insecticide 
F  - fish toxicant / fungicide 

Fish – the presence of fish within the systems 
F - fish was present 
NF – no fish was present  

Physico-Chemical Pesticide Properties  
log Koc – log-transformed organic carbon absorption coefficient 
log kow – log-transformed octanol-water coefficient 

Structural Properties of the System 
LTSA/V R – log-transformed total surface area to volume ratio 
L Volume - log-transformed volume (m3) 

Toxicity Units 
LTU Daphnia – log-transformed toxic unit based on geometric means for 
Daphnia species 
L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

Fate Properties of the Pesticide  
LAAB – log-transformed aerobic aquatic biotransformation (days) 
L ASB - log-transformed aerobic soil biotransformation (days) 
L HHL - log-transformed hydrolysis half-life (days) 
L WPHL - log-transformed water photolysis half-life (days) 
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atrazine H   20 0.0000 F -3.0496 -1.9297 2.5000 1.9390 1.6435 2.5250 2.2782 2.3010 

atrazine H 2.0512 0.0934 100 0.0000 F -2.3507 -1.2307 2.5000 1.9390 1.6435 2.5250 2.2782 2.3010 

DeNoyelles et 
al., (1982) 

azinphos-
methyl 

I   0.2 0.0000 NF -0.7449 0.1549 2.9600 2.8974 1.5051 0.5046 0.5570 1.5682 

azinphos-
methyl 

I   1 0.0000 NF -0.0459 0.8539 2.9600 2.8974 1.5051 0.5046 0.5570 1.5682 

azinphos-
methyl 

I   4 0.0000 NF 0.5562 1.4559 2.9600 2.8974 1.5051 0.5046 0.5570 1.5682 

azinphos-
methyl 

I   20 0.0000 NF 1.2551 2.1549 2.9600 2.8974 1.5051 0.5046 0.5570 1.5682 

Sierszen and 
Lozano 
(1998) 

carbaryl I 1.4969 0.3444 1000 1.3979 NF 1.6636 2.7150 1.8500 2.3010 1.0167 1.0709 1.2738 0.2355 Hanazato and 
Yasuno 
(1998) 

carbendazim F 0.4771 0.8692 2.17 0.0000 NF -2.5158 -0.7631 1.3800 2.4735 2.5051 3.0394 1.7853 3.2613 

carbendazim F 0.4771 0.8692 20.67 0.2923 NF -1.5369 0.2157 1.3800 2.4735 2.5051 3.0394 1.7853 3.2613 

carbendazim F 0.4771 0.8692 226 0.5378 NF -0.4981 1.2545 1.3800 2.4735 2.5051 3.0394 1.7853 3.2613 

Slijkerman et 
al., (2004) 

chlorpyrifos I -0.2147 0.8831 5 0.0000 NF 0.8942 2.0000 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 Brock et al., 
(1992) 
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chlorpyrifos I -0.2147 0.8831 35 1.7800 NF 1.7393 2.8451 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos I -0.2147 0.8831 35 1.7534 NF 1.7393 2.8451 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos I 1.0492 0.4440 0.03 0.0000 F -1.3276 -0.2218 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

chlorpyrifos I 1.0492 0.4440 0.088 0.0000 F -0.8603 0.2455 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

Biever et al., 
(1994) 

chlorpyrifos I 0.4771 0.7267 28 1.0792 NF 1.6424 2.7482 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 Hughes et al., 
(1980) 

chlorpyrifos I 1.7404 0.3838 0.51 0.0000 F -0.0972 1.0086 4.7000 3.6880 2.2022 1.4771 1.7076 1.5459 

chlorpyrifos I 1.7404 0.3838 6.29 0.0000 F 0.9939 2.0997 4.7000 3.6880 2.2022 1.4771 1.7076 1.5459 

chlorpyrifos I 1.7404 0.3838 32 0.0000 F 1.7004 2.8062 4.7000 3.6880 2.2022 1.4771 1.7076 1.5459 

Siefert et al., 
(1989) 

chlorpyrifos I 0.9731 0.8136 1.7 1.6532 NF 0.4257 1.5315 4.7000 3.6880 2.2022 1.4771 1.7076 1.1159 

chlorpyrifos I 0.9731 0.8136 16.5 1.6990 NF 1.4127 2.5185 4.7000 3.6880 2.2022 1.4771 1.7076 1.1159 

Lucassen and 
Leeuwangh 
(1994) 

cypermethrin I -0.6990 1.0752 0.08 1.1761 NF -1.7957 1.0795 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 

cypermethrin I -0.6990 1.0752 0.3 1.4771 NF -1.2217 1.6535 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 

Wendt-Rasch 
et al., (2003a) 
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cypermethrin I -0.6990 1.0752 1.6 2.1761 NF -0.4947 2.3805 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 

cypermethrin I -0.6990 1.0752 3.2 2.1761 NF -0.1937 2.6816 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 

cypermethrin I -1.0862 1.1166 0.05 0.2742 NF -1.9998 0.8754 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 Wendt-Rasch 
et al., (2003b) 

deltamethrin I 1.2041 0.7559 13 2.1987 NF 1.2831 3.9475 4.5000 5.0646 1.2788 1.6812 1.9418 1.3054 Tidou et al., 
(1992) 

diflubenzuron I 2.6021  30 1.2338 F 0.8454 1.9834 3.8900 3.8663 0.6021 1.4472 1.0534 1.7475 Ludwig 
(1993) 

diflubenzuron I 1.6335 0.4654 3.36 1.0000 F -0.1054 1.0326 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 

diflubenzuron I 1.6335 0.4654 27.2 2.0000 F 0.8028 1.9408 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 

Tanner and 
Moffett 
(1995) 

esfenvalerate I   0.01 0.0000 F -1.5886 0.1220 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I   0.08 0.0000 F -0.6855 1.0251 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I   0.2 0.0000 F -0.2876 1.4230 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I   1 0.0000 F 0.4114 2.1220 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I   5 0.0000 F 1.1104 2.8210 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Lozano et al., 
(1992) 
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esfenvalerate I -0.7447 1.0318 0.005 0.4564 NF -1.8896 -0.1790 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I -0.7447 1.0318 0.18 1.0000 NF -0.3333 1.3773 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I -0.7447 1.0318 0.61 2.0000 NF 0.1967 1.9073 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I -0.7447 1.0318 2.1 2.0000 NF 0.7336 2.4442 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I -0.7447 1.0318 7.5 2.0000 NF 1.2865 2.9971 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I -0.7447 1.0318 26 2.0000 NF 1.8264 3.5370 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Samsoe-
Peterson et 
al., (2001) 

fenthion I 0.1761 0.8615 23 0.6021 NF 1.5693 2.5373 4.8400 3.2553 0.0000 -1.9830 0.7526 1.7544 

fenthion I 0.1761 0.8615 175 0.9031 NF 2.4506 3.4186 4.8400 3.2553 0.0000 -1.9830 0.7526 1.7544 

Hanazato and 
Kasai (1995) 

fenthion I 2.6021  250 0.3424 F 2.6055 3.5735 4.8400 3.2553 0.0000 -1.9830 0.7526 1.7544 Ludwig 
(1993) 

fenvalerate I 2.0969 0.0792 0.05 0.8451 NF -1.0885 0.8303 5.0100 3.7243 2.2524 0.7780 1.9192 1.4771 

fenvalerate I 2.0969 0.0792 0.01 0.0000 NF -1.7875 0.1313 5.0100 3.7243 2.2524 0.7780 1.9192 1.4771 

Day and 
Kaushik 
(1987) 

glufosinate-
ammonium 

H 1.2586 0.4942 1 0.0000 NF -5.8410 -3.6543 -4.8100 1.8412 1.0837 0.8320 0.4771 2.5623 Faber et al., 
(1998) 
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glufosinate-
ammonium 

H 1.2586 0.4942 10 0.0000 NF -4.8410 -2.6543 -4.8100 1.8412 1.0837 0.8320 0.4771 2.5623 

glufosinate-
ammonium 

H 1.2586 0.4942 100 0.0000 NF -3.8410 -1.6543 -4.8100 1.8412 1.0837 0.8320 0.4771 2.5623 

glufosinate-
ammonium 

H 1.2586 0.4942 1000 1.2739 NF -2.8410 -0.6543 -4.8100 1.8412 1.0837 0.8320 0.4771 2.5623 

glufosinate-
ammonium 

H 1.2586 0.4942 10000 4.5784 NF -1.8410 0.3457 -4.8100 1.8412 1.0837 0.8320 0.4771 2.5623 

hexazinone H 1.9469 0.1303 32 0.0000 NF -3.7913 -2.6580 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

hexazinone H 1.9469 0.1303 102 0.0000 NF -3.2878 -2.1546 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

hexazinone H 1.9469 0.1303 1106 0.1761 NF -2.2527 -1.1194 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

hexazinone H 1.9469 0.1303 11276 0.9031 NF -1.2443 -0.1110 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

Thompson et 
al., (1993) 

isoproturon H -0.6021  10 0.0000 NF -2.8228 -1.6150 2.5000 2.0864 1.6609 1.9031 1.6089 3.1930 

isoproturon H -0.6021  30 0.0000 NF -2.3457 -1.1378 2.5000 2.0864 1.6609 1.9031 1.6089 3.1930 

isoproturon H -0.6021  90 0.0000 NF -1.8686 -0.6607 2.5000 2.0864 1.6609 1.9031 1.6089 3.1930 

Trauns-purger 
et al., (1993) 

lambda-
cyhalothrin 

I 1.3979 0.4472 0.017 0.0000 NF -1.0376 1.4575 7.0000 5.0969 1.5441 1.3617 1.5476 0.8451 Hamer and 
Hill (1994) 
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lambda-
cyhalothrin 

I 1.3979 0.4472 0.17 0.0000 NF -0.0376 2.4575 7.0000 5.0969 1.5441 1.3617 1.5476 0.8451 

lindane I -0.5229  4 0.0000 NF -2.4499 0.9410 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I -0.5229  8 0.6021 NF -2.1489 1.2421 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I -0.5229  16 1.4472 NF -1.8479 1.5431 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I -0.5229  32 1.7482 NF -1.5468 1.8441 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I -0.5229  64 2.4472 NF -1.2458 2.1452 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I -0.5229  128 2.4472 NF -0.9448 2.4462 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I -0.5229  256 2.4472 NF -0.6437 2.7472 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane I -0.5229  512 2.4472 NF -0.3427 3.0483 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Fliedner and 
Klein (1996) 

lindane I 1.0000 0.7782 321 2.5999 NF -0.5455 2.8455 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 Tidou et al., 
(1992) 

linuron H 0.0086  1000 2.5484 NF 0.3501 1.3771 3.0000 2.3918 1.6902 1.6902 1.6243 3.2613 Stephenson 
and Kane 
(1984) 
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methabenzthiaz
uron 

H 0.7782  10 0.0000 NF -2.9585 -1.7507 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  21 0.0000 NF -2.6363 -1.4285 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  43 0.0000 NF -2.3251 -1.1172 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  89 0.0000 NF -2.0092 -0.8013 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  184 0.0000 NF -1.6937 -0.4859 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  380 0.0000 NF -1.3788 -0.1709 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  787 0.0000 NF -1.0626 0.1453 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  1629 0.0000 NF -0.7466 0.4612 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  3371 0.0000 NF -0.4308 0.7771 2.6400 3.2916    2.5623 

Wellmann et 
al., (1998) 

methoxychlor I 2.0334 0.1430 2.9 0.0000 NF -0.6301 0.6510 5.0800 4.9165 1.9542 1.8360 1.7628 2.5647 

methoxychlor I 2.0334 0.1430 321 2.4559 NF 1.4140 2.6952 5.0800 4.9165 1.9542 1.8360 1.7628 2.5647 

methoxychlor I 2.0334 0.1430 4.5 0.5441 NF -0.4393 0.8419 5.0800 4.9165 1.9542 1.8360 1.7628 2.5647 

Stephenson et 
al., (1989) 
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methoxychlor I 2.0334 0.1430 46.5 2.1461 NF 0.5749 1.8561 5.0800 4.9165 1.9542 1.8360 1.7628 2.5647 

methyl 
parathion 

I 0.6990 0.4150 100 0.2122 F 2.0503 2.6875 3.0000 3.6776 1.0106 1.0000 0.6128 1.3222 Crossland 
(1984) 

methyl 
parathion 

I 0.0086  2500 1.7035 NF 3.4482 4.0854 3.0000 3.6776 1.0106 1.0000 0.6128 1.3222 Stephenson 
and Kane 
(1984) 

metsulfuron 
methyl 

H 1.9469 0.1303 10 0.0000 NF -4.1761 -2.9682 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 100 0.0000 NF -3.1761 -1.9682 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 500 0.0000 NF -2.4771 -1.2693 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 1000 0.0000 NF -2.1761 -0.9682 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H -1.0862 1.1166 1 0.0000 NF -5.1761 -3.9682 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H -1.0862 1.1166 5 0.0000 NF -4.4771 -3.2693 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H -1.0862 1.1166 20 0.0000 NF -3.8751 -2.6672 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

Thompson et 
al., (1993) 

pyridaben I 1.2304 0.5340 1.06 0.0000 F 0.2057 2.0162 6.1000 4.8451 2.1145 -1.6812 1.8469 3.2613 Rand et al., 
(200) 
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pyridaben I 1.2304 0.5340 4.85 0.9823 F 0.8661 2.6766 6.1000 4.8451 2.1145 -1.6812 1.8469 3.2613 

pyridaben I 1.2304 0.5340 50.98 1.5051 F 1.8878 3.6983 6.1000 4.8451 2.1145 -1.6812 1.8469 3.2613 

rotenone F 2.3927  6 2.6990 F -0.4515 0.4752 4.1600 4.0000 0.4771  0.9879 0.1139 Beal and 
Anderson 
(1993) 

rotenone F 4.8651 0.1790 3000 1.9652 NF 2.2475 3.1742 4.1600 4.0000 0.4771  0.9879 0.1139 Melass et al., 
(2001) 

tebufenozide I 1.7959 0.2041 70 0.0000 F -1.1435 0.4860 4.2500 2.6799 2.4344 2.5136 2.0000 3.0145 

tebufenozide I 1.7959 0.2041 130 0.0000 F -0.8746 0.7549 4.2500 2.6799 2.4344 2.5136 2.0000 3.0145 

tebufenozide I 1.7959 0.2041 330 0.0000 F -0.4701 1.1594 4.2500 2.6799 2.4344 2.5136 2.0000 3.0145 

tebufenozide I 1.7959 0.2041 660 0.0000 F -0.1690 1.4605 4.2500 2.6799 2.4344 2.5136 2.0000 3.0145 

Hughes et al., 
(1980) 

temephos I 0.4771 0.7267 9 1.0792 NF 2.9128 2.6750 4.9100 5.0000 1.4771 1.1760 1.2355 2.6628 Hughes et al., 
(1980) 

KEY 

Type – type of pesticides  
H  - herbicide 
I – insecticide 
F  - fish toxicant / fungicide 

Structural Properties of the System 
LTSA/V R – log-transformed total surface area to volume ratio 
L Volume - log-transformed volume (m3) 

Toxicity Units 
LTU Daphnia – log-transformed toxic unit based on geometric means for 
Daphnia species 
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Fish – the presence of fish within the systems 
F - fish was present 
NF – no fish was present  

Physico-Chemical Pesticide Properties  
log Koc – log-transformed organic carbon absorption coefficient 
log kow – log-transformed octanol-water coefficient 

L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

Fate Properties of the Pesticide  
LAAB – log-transformed aerobic aquatic biotransformation (days) 
L ASB - log-transformed aerobic soil biotransformation (days) 
L HHL - log-transformed hydrolysis half-life (days) 
L WPHL - log-transformed water photolysis half-life (days) 
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azinphos-
methyl 

I 1.5682 0.5172 1.17 0.0000 F 0.0223 0.9221 2.9600 2.8974 1.5051 0.5046 0.5570 1.5682 Tanner and Knuth 
(1995) 

carbaryl I 1.4969 0.3444 1000 1.5563 NF 1.6636 2.7150 1.8500 2.3010 1.0167 1.0709 1.2738 0.2355 Hanazato and Yasuno 
(1998) 

carbendazim F 0.4771 0.8692 2.17 0.6385 NF -2.5158 -0.7631 1.3800 2.4735 2.5051 3.0394 1.7853 3.2613 
carbendazim F 0.4771 0.8692 20.67 0.6021 NF -1.5369 0.2157 1.3800 2.4735 2.5051 3.0394 1.7853 3.2613 
carbendazim F 0.4771 0.8692 226 1.5441 NF -0.4981 1.2545 1.3800 2.4735 2.5051 3.0394 1.7853 3.2613 

Slijkerman et al., 
(2004) 

chlorpyrifos I -0.2147 0.8831 5 1.0000 NF 0.8942 2.0000 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 
chlorpyrifos I -0.2147 0.8831 35 2.0000 NF 1.7393 2.8451 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 
chlorpyrifos I -0.2147 0.8831 35 2.4771 NF 1.7393 2.8451 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Brock et al., (1992) 

chlorpyrifos I 1.0492 0.4440 0.03 0.0000 F -1.3276 -0.2218 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 
chlorpyrifos I 1.0492 0.4440 0.088 0.0000 F -0.8603 0.2455 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

Biever et al., (1994) 

chlorpyrifos I 0.4771 0.7267 28 1.2553 NF 1.6424 2.7482 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 Hughes et al., (1980) 
chlorpyrifos I 0.9731 0.8136 1.7 2.3010 NF 0.4257 1.5315 4.7000 3.6880 2.2022 1.4771 1.7076 1.1159 
chlorpyrifos I 0.9731 0.8136 16.5 2.3010 NF 1.4127 2.5185 4.7000 3.6880 2.2022 1.4771 1.7076 1.1159 

Lucassen and 
Leeuwangh (1994) 

cypermethrin I -0.6990 1.0752 0.08 0.9489 NF -1.7957 1.0795 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 
cypermethrin I -0.6990 1.0752 0.3 2.6021 NF -1.2217 1.6535 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 
cypermethrin I -0.6990 1.0752 1.6 2.7404 NF -0.4947 2.3805 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 
cypermethrin I -0.6990 1.0752 3.2 2.8451 NF -0.1937 2.6816 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 

Wendt-Rasch et al., 
(2003) 

cypermethrin I 1.4771 0.3927 0.07 0.0000 NF -1.8537 1.0215 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 Hamer and Hill (1994) 
deltamethrin I 1.2041 0.7559 13 2.1987 NF 1.2831 3.9475 4.5000 5.0646 1.2788 1.6812 1.9418 1.3054 Tidou et al., (1992) 
diflubenzuron I 1.0086 0.7435 10 2.0000 NF 0.3683 1.5062 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 Ali and Kok-Yokomic 

(1989) 
diflubenzuron I 2.6021  30 0.2355 F 0.8454 1.9834 3.8900 3.8663 0.6021 1.4472 1.0534 1.7475 Ludwig (1993) 
diflubenzuron I 1.6335 0.4654 3.36 1.0969 F -0.1054 1.0326 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 Tanner and Moffett 
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diflubenzuron I 1.6335 0.4654 27.2 1.0969 F 0.8028 1.9408 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 (1995) 

esfenvalerate I   0.01 0.0000 F -1.5886 0.1220 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I   0.08 0.0000 F -0.6855 1.0251 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I   0.2 0.0000 F -0.2876 1.4230 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I   1 0.0000 F 0.4114 2.1220 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I   5 0.0000 F 1.1104 2.8210 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Lozano et al., (1992) 

esfenvalerate I -0.7447 1.0318 0.005 0.3010 NF -1.8896 -0.1790 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I -0.7447 1.0318 0.18 1.0000 NF -0.3333 1.3773 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I -0.7447 1.0318 0.61 2.0000 NF 0.1967 1.9073 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I -0.7447 1.0318 2.1 2.0000 NF 0.7336 2.4442 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I -0.7447 1.0318 7.5 2.0000 NF 1.2865 2.9971 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 
esfenvalerate I -0.7447 1.0318 26 2.0000 NF 1.8264 3.5370 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Samsoe-Peterson et al., 
(2001) 

fenthion I 2.6021  250 1.0175 F 2.6055 3.5735 4.8400 3.2553 0.0000 -
1.9830 

0.7526 1.7544 Ludwig (1993) 

fenvalerate I 2.0969 0.0792 0.05 0.8938 NF -1.0885 0.8303 5.0100 3.7243 2.2524 0.7780 1.9192 1.4771 
fenvalerate I 2.0969 0.0792 0.01 0.0000 NF -1.7875 0.1313 5.0100 3.7243 2.2524 0.7780 1.9192 1.4771 

Day and Kaushil 
(1987) 

glufosinate-
ammonium 

H 1.2586 0.4942 1000 0.4624 NF -2.8410 -0.6543 -4.8100 1.8412 1.0837 0.8320 0.4771 2.5623 

glufosinate-
ammonium 

H 1.2586 0.4942 10000 3.4591 NF -1.8410 0.3457 -4.8100 1.8412 1.0837 0.8320 0.4771 2.5623 

Faber et al., (1998) 

hexazinone H 1.9469 0.1303 32 0.0000 NF -3.7913 -2.6580 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 
hexazinone H 1.9469 0.1303 102 0.0000 NF -3.2878 -2.1546 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

Thompson et al., 
(1993) 

lambda-
cyhalothrin 

I 1.3979 0.4472 0.017 0.0000 NF -1.0376 1.4575 7.0000 5.0969 1.5441 1.3617 1.5476 0.8451 

lambda-
cyhalothrin 

I 1.3979 0.4472 0.17 0.0000 NF -0.0376 2.4575 7.0000 5.0969 1.5441 1.3617 1.5476 0.8451 

Hamer et Hill (1994) 
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lindane I -0.5229  4 0.0000 NF -2.4499 0.9410 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 
lindane I -0.5229  8 0.0000 NF -2.1489 1.2421 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 
lindane I -0.5229  16 0.0000 NF -1.8479 1.5431 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 
lindane I -0.5229  32 0.0000 NF -1.5468 1.8441 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 
lindane I -0.5229  64 0.0000 NF -1.2458 2.1452 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 
lindane I -0.5229  128 1.0607 NF -0.9448 2.4462 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 
lindane I -0.5229  256 1.0607 NF -0.6437 2.7472 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 
lindane I -0.5229  512 1.0607 NF -0.3427 3.0483 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Fliedner and Klein 
(1996) 

lindane I 1.0000 0.7782 321 0.0000 NF -0.5455 2.8455 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 Tidou et al., (1992) 
metamitron H 0.6532 0.5065 400 0.0000 F -2.4497 -1.2308 0.8300 3.5156 1.1611  1.3467 0.8751 
metamitron H 0.6532 0.5065 20000 0.3010 F -0.7507 0.4682 0.8300 3.5156 1.1611  1.3467 0.8751 

Heimbach (1994) 

metamitron H 0.6532 0.5065 16 0.0000 F -3.8477 -2.6287 0.8300 3.5156 1.1611  1.3467 0.8751 
metamitron H 0.6532 0.5065 170 0.0000 F -2.8213 -1.6024 0.8300 3.5156 1.1611  1.3467 0.8751 
metamitron H 1.8791 0.2201 32 0.0000 F -3.5466 -2.3277 0.8300 3.5156 1.1611  1.3467 0.8751 
metamitron H 1.8791 0.2201 330 0.0000 F -2.5333 -1.3143 0.8300 3.5156 1.1611  1.3467 0.8751 

Heimbach et al., (1994) 

methabenzthiaz
uron 

H 0.7782  10 0.0000 NF -2.9585 -1.7507 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  21 0.0000 NF -2.6363 -1.4285 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  43 0.0000 NF -2.3251 -1.1172 2.6400 3.2916    2.5623 

methabenzthiaz
uron 

H 0.7782  89 0.0000 NF -2.0092 -0.8013 2.6400 3.2916    2.5623 

Wellmann et al., (1998) 

methoxychlor I 2.0334 0.1430 2.9 0.0000 NF -0.6301 0.6510 5.0800 4.9165 1.9542 1.8360 1.7628 2.5647 
methoxychlor I 2.0334 0.1430 321 2.2219 NF 1.4140 2.6952 5.0800 4.9165 1.9542 1.8360 1.7628 2.5647 

Stephenson et al., 
(1989) 
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methoxychlor I 2.0334 0.1430 4.5 0.9031 NF -0.4393 0.8419 5.0800 4.9165 1.9542 1.8360 1.7628 2.5647 
methoxychlor I 2.0334 0.1430 46.5 2.0843 NF 0.5749 1.8561 5.0800 4.9165 1.9542 1.8360 1.7628 2.5647 
metsulfuron 
methyl 

H 1.9469 0.1303 10 0.0000 NF -4.1761 -2.9682 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 100 0.0000 NF -3.1761 -1.9682 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 500 0.0000 NF -2.4771 -1.2693 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 1000 0.0000 NF -2.1761 -0.9682 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

Thompson et al., 
(1993) 

permethrin I 2.0969 0.0792 0.5 1.7782 NF -0.6110 1.5491 6.1000 4.6114 1.4771 -
0.9031 

1.5125 3.2613 

permethrin I 2.0969 0.0792 5 2.7782 NF 0.3890 2.5491 6.1000 4.6114 1.4771 -
0.9031 

1.5125 3.2613 

Kaushik et al., (1987) 

pyridaben I 1.2304 0.5340 1.06 0.0000 F 0.2057 2.0162 6.1000 4.8451 2.1145 -
1.6812 

1.8469 3.2613 

pyridaben I 1.2304 0.5340 4.85 0.0000 F 0.8661 2.6766 6.1000 4.8451 2.1145 -
1.6812 

1.8469 3.2613 

pyridaben I 1.2304 0.5340 50.98 0.0000 F 1.8878 3.6983 6.1000 4.8451 2.1145 -
1.6812 

1.8469 3.2613 

Rand et al., (2000) 

rotenone F 2.3927  6 1.7782 F -0.4515 0.4752 4.1600 4.0000 0.4771  0.9879 0.1139 Beal and Anderson 
(1989) 

tebufenozide I 1.7959 0.2041 70 0.0000 F -1.1435 0.4860 4.2500 2.6799 2.4344 2.5136 2.0000 3.0145 
tebufenozide I 1.7959 0.2041 130 1.9570 F -0.8746 0.7549 4.2500 2.6799 2.4344 2.5136 2.0000 3.0145 
tebufenozide I 1.7959 0.2041 330 2.3549 F -0.4701 1.1594 4.2500 2.6799 2.4344 2.5136 2.0000 3.0145 
tebufenozide I 1.7959 0.2041 660 3.2000 F -0.1690 1.4605 4.2500 2.6799 2.4344 2.5136 2.0000 3.0145 

Kreutzweiser and 
Thomas (1995) 

temephos I 0.4771 0.7267 9 1.2553 NF 2.9128 2.6750 4.9100 5.0000 1.4771 1.1760 1.2355 2.6628 Hughes et al., (1980) 
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triazamate I -0.1024 0.7782 0.08 0.0000 NF -3.4184 -1.1758 2.1500 3.0039  2.1761   
triazamate I -0.1024 0.7782 0.228 0.0000 NF -2.9636 -0.7210 2.1500 3.0039  2.1761   
triazamate I -0.1024 0.7782 0.852 0.0000 NF -2.3911 -0.1485 2.1500 3.0039  2.1761   
triazamate I -0.1024 0.7782 1.885 0.0000 NF -2.0462 0.1964 2.1500 3.0039  2.1761   
triazamate I -0.1024 0.7782 5.5 0.0000 NF -1.5812 0.6615 2.1500 3.0039  2.1761   

Toy (1994) 

KEY 

Type – type of pesticides  
H  - herbicide 
I – insecticide 
F  - fish toxicant / fungicide 

Fish – the presence of fish within the systems 
F - fish was present 
NF – no fish was present  

Physico-Chemical Pesticide Properties  
log Koc – log-transformed organic carbon absorption coefficient 
log kow – log-transformed octanol-water coefficient 

Structural Properties of the System 
LTSA/V R – log-transformed total surface area to volume ratio 
L Volume - log-transformed volume (m3) 

Toxicity Units 
LTU Daphnia – log-transformed toxic unit based on geometric means for 
Daphnia species 
L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

Fate Properties of the Pesticide  
LAAB – log-transformed aerobic aquatic biotransformation (days) 
L ASB - log-transformed aerobic soil biotransformation (days) 
L HHL - log-transformed hydrolysis half-life (days) 
L WPHL - log-transformed water photolysis half-life (days) 
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bendiocarb 5.3010  24 0 -0.0852 1.7106 -0.3223 1.7200 2.5855 0.2586 1.1551 0.8733 0.5315 Lahr et al., (2000) 

carbaryl 1.4969 0.3444 1000 1 1.6636 2.7150 2.2034 1.8500 2.3010 1.0167 1.0709 1.2738 0.2355 Hanazato and Yasuno 
(1995) 

carbofuran 0.1038 0.7938 6.3 0 -0.7429 1.5451 0.7938 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

carbofuran   9 1 -0.5880 1.7000 0.9487 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

carbofuran   14 0.5 -0.3961 1.8919 1.1406 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

carbofuran 0.1038 0.7938 22.5 1 -0.1901 2.0979 1.3466 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

carbofuran   32 1 -0.0371 2.2509 1.4996 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Wayland and Boag 
(1995) 

chlorpyrifos 1.0492 0.4440 0.03 0 -1.3276 -0.2218 -1.0669 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

chlorpyrifos 1.0492 0.4440 0.088 0.67 -0.8603 0.2455 -0.5996 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

chlorpyrifos 1.0492 0.4440 0.25 0.67 -0.4068 0.6990 -0.1461 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

chlorpyrifos 1.0492 0.4440 0.83 0.67 0.1143 1.2201 0.3750 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

Biever et al., (1994) 
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chlorpyrifos 1.0492 0.4440 2.7 0.67 0.6266 1.7324 0.8873 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

chlorpyrifos -0.2147 0.8831 5 1 0.8942 2.0000 1.1549 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos -0.2147 0.8831 35 1 1.7393 2.8451 2.0000 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos -0.2147 0.8831 35 1 1.7393 2.8451 2.0000 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Brock et al., (1992) 

chlorpyrifos 1.7404 0.3838 0.51 1 -0.0972 1.0086 0.1635 4.7000 3.6880 2.2022 1.4771 1.7076 1.5459 

chlorpyrifos 1.7404 0.3838 6.29 1 0.9939 2.0997 1.2546 4.7000 3.6880 2.2022 1.4771 1.7076 1.5459 

chlorpyrifos 1.7404 0.3838 32 1 1.7004 2.8062 1.9611 4.7000 3.6880 2.2022 1.4771 1.7076 1.5459 

Siefert et al., (1989) 

chlorpyrifos 1.7782 0.7210 0.1 0.18 -0.8048 0.3010 -0.5441 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos 1.7782 0.7210 0.9 0.64 0.1495 1.2553 0.4102 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos 1.7782 0.7210 6 0.91 0.9734 2.0792 1.2341 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

chlorpyrifos 1.7782 0.7210 44 1 1.8387 2.9445 2.0994 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Van den Brink et al., 
(1996) 
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deltamethrin 5.3010  0.64 1 -0.0247 2.6397 1.7211 4.5000 5.0646 1.2788 1.6812 1.9418 1.3054 Lahr et al., (2000) 

deltamethrin 0.5740  0.23 1 -0.4691 2.1953 1.2767 4.5000 5.0646 1.2788 1.6812 1.9418 1.3054 Morrill and Neal 
(1990) 

deltamethrin 1.2041 0.7559 13 1 1.2831 3.9475 3.0289 4.5000 5.0646 1.2788 1.6812 1.9418 1.3054 

deltamethrin 1.2041 0.7559 0.5 1 -0.1319 2.5325 1.6139 4.5000 5.0646 1.2788 1.6812 1.9418 1.3054 

Tidou et al., (1992) 

diflubenzuron 1.0086 0.7435 10 1 0.3683 1.5062 -0.6679 3.8900 3.8663 0.6021 1.4472 1.9243 1.0534 Ali and Kok-Yokomi 
(1989) 

diflubenzuron 5.3010  10.4 0 0.3853 1.5233 -0.6509 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 Lahr et al., (2000) 

esfenvalerate   0.01 0 -1.5886 0.1220  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate   0.08 1 -0.6855 1.0251  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate   0.2 1 -0.2876 1.4230  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate   1 1 0.4114 2.1220  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate   5 1 1.1104 2.8210  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Lozano et al., (1992) 
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fenitrothion 5.3010  80 1 0.8061 2.7653 1.6611 3.4300 3.0519 1.5563 0.5623 1.1021 2.2695 Lahr et al., (2000) 

lindane 0.0000 0.7482 4 1 -2.4499 0.9410 0.1423 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane 0.0000 0.7482 8 1 -2.1489 1.2421 0.4434 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane 0.0000 0.7482 16 1 -1.8479 1.5431 0.7444 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane 0.0000 0.7482 24 1 -1.6718 1.7192 0.9205 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane 0.0000 0.7482 32 1 -1.5468 1.8441 1.0454 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

lindane 0.0000 0.7482 64 1 -1.2458 2.1452 1.3464 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Peither et al., (1996) 

lindane 1.0000 0.7782 321 0 -0.5455 2.8455 2.0468 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 Tidou et al., (1992) 

lindane 1.0000 0.7782 103.6 1 -1.0366 2.3543 1.5556 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 Caquet et al., (1992) 

methyl 
parathion 

1.6021 0.5119 8 1 0.9534 1.5906 0.9691 3.0000 3.6776 1.0106 1.0000 0.6128 1.3222 

methyl 
parathion 

1.6021 0.5119 29 1 1.5127 2.1499 1.5284 3.0000 3.6776 1.0106 1.0000 0.6128 1.3222 

Crossland (1988) 
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permethrin 0.4771 0.6561 0.75 1 -0.4349 1.7252 0.8178 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

permethrin 0.4771 0.6561 1.5 1 -0.1338 2.0263 1.1188 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

Yasuno et al., (1988) 

phorate 1.6532 0.4914 45 1 0.8282 3.5454 1.7320 3.9200 2.6575 0.4771 0.0414 -0.3401 0.5051 

phorate 1.6532 0.4914 45 1 1.1197 3.8369 2.0235 3.9200 2.6575 0.4771 0.0414 -0.3401 0.5051 

Dieter et al., (1996) 

KEY 

Type – type of pesticides  
H  - herbicide 
I – insecticide 
F  - fish toxicant / fungicide 

Fish – the presence of fish within the systems 
F - fish was present 
NF – no fish was present  

Physico-Chemical Pesticide Properties  
log Koc – log-transformed organic carbon absorption coefficient 
log kow – log-transformed octanol-water coefficient 

Structural Properties of the System 
LTSA/V R – log-transformed total surface area to volume ratio 
L Volume - log-transformed volume (m3) 

Toxicity Units 
LTU Daphnia – log-transformed toxic unit based on geometric 
means for Daphnia species 
L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

Fate Properties of the Pesticide  
LAAB – log-transformed aerobic aquatic biotransformation (days) 
L ASB - log-transformed aerobic soil biotransformation (days) 
L HHL - log-transformed hydrolysis half-life (days) 
L WPHL - log-transformed water photolysis half-life (days) 
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Bendiocarb 5.3010  24 0 -0.0852 1.711 -0.322 1.7200 2.5855 0.2586 1.1551 0.8733 0.5315 Lahr et al., 
(2000) 

Carbaryl 1.4969 0.3444 1000 1 1.6636 2.715 2.203 1.8500 2.3010 1.0167 1.0709 1.2738 0.2355 Hanazato and 
Yasuno (1995) 

Carbofuran   9.2 0.57 -0.5784 1.71 0.958 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Carbofuran   14.4 0.57 -0.3839 1.904 1.153 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Carbofuran   32.5 0.57 -0.0304 2.258 1.506 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Carbofuran   32.6 0.57 -0.0290 2.259 1.508 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Wayland and 
Boag (1995) 

Carbofuran 0.1038 6.2200 6.3 0 -0.7429 1.545 0.794 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Carbofuran   9 1 -0.5880 1.7 0.949 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Carbofuran   14 0.5 -0.3961 1.892 1.141 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Carbofuran 0.1038 0.7938 22.5 1 -0.1901 2.098 1.347 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Carbofuran   32 1 -0.0371 2.251 1.5 1.5200 1.4065 1.0414 0.7482 0.3010 -0.1675 

Wayland and 
Boag (1990) 
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Chlorpyrifos 1.0492 0.4440 0.03 0 -1.3276 -0.222 -1.067 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

Chlorpyrifos 1.0492 0.4440 0.088 0.5 -0.8603 0.246 -0.6 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

Chlorpyrifos 1.0492 0.4440 0.25 0.5 -0.4068 0.699 -0.146 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

Chlorpyrifos 1.0492 0.4440 0.83 0.5 0.1143 1.22 0.375 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

Chlorpyrifos 1.0492 0.4440 2.7 0.5 0.6266 1.732 0.887 4.7000 3.6880 2.2022 1.4771 1.7076 1.2041 

Biever et al., 
(1994) 

Chlorpyrifos -0.2147 0.8831 5 1 0.8942 2 1.155 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Chlorpyrifos -0.2147 0.8831 35 1 1.7393 2.845 2 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Chlorpyrifos -0.2147 0.8831 35 1 1.7393 2.845 2 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Brock et al., 
(1992)  

Chlorpyrifos 1.7404 0.3838 0.51 1 -0.0972 1.009 0.164 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Chlorpyrifos 1.7404 0.3838 6.29 1 0.9939 2.1 1.255 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Chlorpyrifos 1.7404 0.3838 32 1 1.7004 2.806 1.961 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Siefert et al., 
(1989) 
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Chlorpyrifos 1.7782 0.7210 0.1 0.22 -0.8048 0.301 -0.544 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Chlorpyrifos 1.7782 0.7210 0.9 0.67 0.1495 1.255 0.41 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Chlorpyrifos 1.7782 0.7210 6 88.89 0.9734 2.079 1.234 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Chlorpyrifos 1.7782 0.7210 44 1 1.8387 2.944 2.099 4.7000 3.6880 2.2022 1.4771 1.7076 1.8573 

Van den Brink 
et al., (1996) 

Cypermethrin 4.3979 2.47 0.07 1 -1.8537 1.022 0.668 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 Farmer et al., 
(1994) 

Deltamethrin 5.3010  0.64 1 -0.0247 2.64 1.721 4.5000 5.0646 1.2788 1.6812 1.9418 1.3054 Lahr et al., 
(2000) 

Deltamethrin 0.5740  0.23 1 -0.4691 2.195 1.277 4.5000 5.0646  1.6812   Morrill and 
Neal (1990) 

Deltamethrin 1.2041 0.7559 13 1 1.2831 3.948 3.029 4.5000 5.0646 1.2788 1.6812 1.9418 1.3054 

Deltamethrin 1.2041 0.7559 0.5 1 -0.1319 2.533 1.614 4.5000 5.0646  1.6812   

Tidou et al., 
(1992) 

Diflubenzuron 1.0086 0.7435 10 1 0.3683 1.506 -0.668 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 Ali and Kok-
Yokomi (1989) 

Diflubenzuron 5.3010  10.4 0 0.3853 1.523 -0.651 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 Lahr et al., 
(2000) 
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Diflubenzuron 1.6335 0.4654 3.36 1 -0.1054 1.033 -1.142 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 

Diflubenzuron 1.6335 0.4654 27.2 1 0.8028 1.941 -0.233 3.8900 3.8663 0.6021 1.4472 1.0534 1.9243 

Tanner and 
Moffett (1995) 

Diflubenzuron 1.8129 0.3304 0.7 0 -0.7866 0.351 -1.823 3.8900 3.8663 0.6021 1.4472 1.0534 1.7503 

Diflubenzuron 1.8129 0.3304 2.5 0.25 -0.2338 0.904 -1.27 3.8900 3.8663 0.6021 1.4472 1.0534 1.7503 

Diflubenzuron 1.8129 0.3304 7 0.25 0.2134 1.351 -0.823 3.8900 3.8663 0.6021 1.4472 1.0534 1.7503 

Diflubenzuron 1.8129 0.3304 30 0.75 0.8454 1.983 -0.191 3.8900 3.8663 0.6021 1.4472 1.0534 1.7503 

Liber et al., 
(1996) 

Esfenvalerate   0.01 0 -1.5886 0.122  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Esfenvalerate   0.08 0.5 -0.6855 1.025  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Esfenvalerate   0.2 0.5 -0.2876 1.423  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Esfenvalerate 0.9731 0.7451 1 0.75 0.4114 2.122  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Esfenvalerate 0.9731 0.7451 5 1 1.1104 2.821  6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Lozano et al., 
(1992) 
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Fenitrothion 5.3010  80 1 0.8061 2.765 1.661 3.4300 3.0519 1.5563 0.5623 1.1021 2.2695 Lahr et al., 
(2000) 

lambda-
cyhalothrin 

1.3979 0.4472 0.017 1 -1.0376 1.458  7.0000 5.0969 1.5441 1.3617 1.5476 0.8451 

lambda-
cyhalothrin 

1.3979 0.4472 0.17 1 -0.0376 2.458  7.0000 5.0969 1.5441 1.3617 1.5476 0.8451 

Hamer and Hill 
(1994) 

Lindane 0.0000 0.7482 4 1 -2.4499 0.941 0.142 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Lindane 0.0000 0.7482 8 1 -2.1489 1.242 0.443 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Lindane 0.0000 0.7482 16 1 -1.8479 1.543 0.744 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Lindane 0.0000 0.7482 24 1 -1.6718 1.719 0.92 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Lindane 0.0000 0.7482 32 1 -1.5468 1.844 1.045 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Lindane 0.0000 0.7482 64 1 -1.2458 2.145 1.346 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Lindane 1.0000 0.7782 321 0 -0.5455 2.845 2.047 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Lindane 1.0000 0.7782 103.6 1 -1.0366 2.354 1.556 3.5000 3.0414 2.9912 3.0394 2.3068 2.2375 

Peither et al., 
(1996) 



 

NAESI Technical Series No. 3-31 
Page 191 

APPENDIX E:  Data used to model Insecta Family responses 
C

om
m

on
 n

am
e 

 L
 V

ol
um

e 

L
 T

SA
/V

 R
 

E
ff

ec
t 

C
on

ce
nt

ra
tio

n 
(u

g/
l) 

co
un

t r
at

io
 

ch
an

ge
 

L
 T

U
 D

ap
hn

ia
 

sp
p 

G
M

 
L

/E
C

50
 

L
 T

U
 H

C
5 

- C
 

L
 T

U
 H

C
5 

- I
 

lo
g 

K
ow

 

lo
g 

K
oc

 

L
A

SB
 

L
 W

PH
L

 

L
 A

A
B

 

L
 H

H
L

 

 

methyl 
parathion 

0.6990 0.4150 100 0.5 2.0503 2.687 2.066 3.0000 3.6776 1.0106 1.0000 0.6128 1.5682 Crossland 
(1984) 

methyl 
parathion 

1.6021 0.5119 8 0.6 0.9534 1.591 0.969 3.0000 3.6776 1.0106 1.0000 0.6128 1.5682 

methyl 
parathion 

1.6021 0.5119 29 0.6 1.5127 2.15 1.528 3.0000 3.6776 1.0106 1.0000 0.6128 1.5682 

Crossland 
(1988) 

methyl 
parathion 

0.0086  2500 1 3.4482 4.085 3.464 3.0000 3.6776 1.0106 1.0000 0.6128 1.5682 Stephenson and 
Kane (1984) 

Permethrin   1 0 -0.3099 1.85 0.943 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

Permethrin   10 1 0.6901 2.85 1.943 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

Permethrin   50 1 1.3890 3.549 2.642 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

Permethrin   100 1 1.6901 3.85 2.943 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

Conrad et al., 
(1999) 

Permethrin 0.4771 0.6561 0.75 1 -0.4349 1.725 0.818 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

Permethrin 0.4771 0.6561 1.5 1 -0.1338 2.026 1.119 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

Yasano et al., 
(1988) 

Phorate 1.6532 0.4914 23 1 0.8282 3.545 1.732 3.9200 2.6575 0.4771 0.0414 -0.3401 0.5051 Dieter et al., 
(1996) 
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Phorate 1.6532 0.4914 45 1 1.1197 3.837 2.023 3.9200 2.6575 0.4771 0.0414 -0.3401 0.5051 

Trichlorphon 0.2900 0.6946 2.5 0 0.6448  0.038 0.4300 0.2014 1.4314 2.0414 -0.4815 0.1461 

Trichlorphon 0.2900 0.6946 25 0 1.6448  1.038 0.4300 0.2014 1.4314 2.0414 -0.4815 0.1461 

Trichlorphon 0.2900 0.6946 250 0 2.6448  2.038 0.4300 0.2014 1.4314 2.0414 -0.4815 0.1461 

Cook et al., 
(1995) 

KEY 

Type – type of pesticides  
H  - herbicide 
I – insecticide 
F  - fish toxicant / fungicide 

Fish – the presence of fish within the systems 
F - fish was present 
NF – no fish was present  

Physico-Chemical Pesticide Properties  
log Koc – log-transformed organic carbon absorption coefficient 
log kow – log-transformed octanol-water coefficient 

Structural Properties of the System 
LTSA/V R – log-transformed total surface area to volume ratio 
L Volume - log-transformed volume (m3) 

Toxicity Units 
LTU Daphnia – log-transformed toxic unit based on geometric 
means for Daphnia species 
L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

Fate Properties of the Pesticide  
LAAB – log-transformed aerobic aquatic biotransformation (days) 
L ASB - log-transformed aerobic soil biotransformation (days) 
L HHL - log-transformed hydrolysis half-life (days) 
L WPHL - log-transformed water photolysis half-life (days) 
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alachlor H -0.9431 1.4158 0.89 0.14 -4.1070 -2.9201 0.1354 3.0900 2.2304 1.0502 3.0394 1.2885 3.2613 

alachlor H -0.9431 1.4158 9 0.43 -3.1021 -1.9152 1.1402 3.0900 2.2304 1.0502 3.0394 1.2885 3.2613 

alachlor H -0.9431 1.4158 27.2 0.57 -2.6218 -1.4349 1.6205 3.0900 2.2304 1.0502 3.0394 1.2885 3.2613 

alachlor H -0.9431 1.4158 84.9 0.71 -2.1275 -0.9406 2.1149 3.0900 2.2304 1.0502 3.0394 1.2885 3.2613 

alachlor H -0.9431 1.4158 1027 0.71 -1.0448 0.1421 3.1975 3.0900 2.2304 1.0502 3.0394 1.2885 3.2613 

Spawn et al., 
(1997) 

atrazine H 2.0969 0.0792 140 0.5 -2.2046 -1.0846 1.0666 2.5000 1.9390 1.6435 2.5250 2.2782 2.3010 

atrazine H 2.0969 0.0792 1560 0.75 -1.1576 -0.0376 2.1136 2.5000 1.9390 1.6435 2.5250 2.2782 2.3010 

Stephenson et al., 
(1999) 

atrazine H 2.0512 0.0934 100 0.5 -2.3507 -1.2307 0.9205 2.5000 1.9390 1.6435 2.5250 2.2782 2.3010 Yasuno et al., 
(1988) 

atrazine H -0.8038 1.0212 200 0 -2.0496 -0.9297 1.2215 2.5000 1.9390 1.6435 2.5250 2.2782 2.3010 Lay et al., (1984) 

cypermethrin I -0.6990 1.0752 0.08 0.81 -1.7957 1.0795 -3.9341 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 Webdt-Rasch et 
al., (2003) 
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cypermethrin I -0.6990 1.0752 0.3 1 -1.2217 1.6535 -3.3601 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 

cypermethrin I -0.6990 1.0752 1.6 1 -0.4947 2.3805 -2.6331 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 

cypermethrin I -0.6990 1.0752 3.2 1 -0.1937 2.6816 -2.3321 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 

cypermethrin I 1.4771 0.3927 0.07 0 -1.8537 1.0215 -3.9921 6.6000 4.6270 1.7782 0.2782 1.7762 0.2553 Farmer et al., 
(1994) 

dichlobenil H -0.8038 1.0212 4300 0 -0.1730 0.4405 0.6963 2.7000 2.0414 1.9590 1.1790 0.3802 3.2613 Lay et al., (1984) 

fenthion I 0.1761 0.8615 23 0.5 1.5693 2.5373 -0.5169 4.8400 3.2553 0.0000 -1.9830 0.7526 1.7544 

fenthion I 0.1761 0.8615 175 0.5 2.4506 3.4186 0.3644 4.8400 3.2553 0.0000 -1.9830 0.7526 1.7544 

Hanazato and 
Kasai (1995) 

hexazinone H 1.9469 0.1303 32 0 -3.7913 -2.6580 1.6012 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

hexazinone H 1.9469 0.1303 102 0.33 -3.2878 -2.1546 2.1046 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

hexazinone H 1.9469 0.1303 1106 1 -2.2527 -1.1194 3.1398 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

Thompson et al., 
(1993) 
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hexazinone H 1.9469 0.1303 1127
6 

1 -1.2443 -0.1110 4.1482 1.2000 1.4232 2.2908 3.0394 1.7782 3.2613 

lambda-
cyhalothrin 

I 1.4771 0.3927 0.01
7 

0 -1.0376 1.4575 -3.2582 7.0000 5.0969 1.5441 1.3617 1.5476 0.8451 

lambda-
cyhalothrin 

I 1.4771 0.3927 0.17 0 -0.0376 2.4575 -2.2582 7.0000 5.0969 1.5441 1.3617 1.5476 0.8451 

Farmer et al., 
(1994) 

metamitron H 0.6532 0.5065 16 0 -3.8477 -2.6287 -0.5355 0.8300 3.5156 1.1611 -1.6990 1.3467 0.8751 

metamitron H 1.8791 0.2201 32 0 -3.5466 -2.3277 -0.2345 0.8300 3.5156 1.1611 -1.6990 1.3467 0.8751 

metamitron H 0.6532 0.5065 170 0 -2.8213 -1.6024 0.4908 0.8300 3.5156 1.1611 -1.6990 1.3467 0.8751 

metamitron H 1.8791 0.2201 330 0 -2.5333 -1.3143 0.7789 0.8300 3.5156 1.1611 -1.6990 1.3467 0.8751 

Heimbach et al., 
(1994) 

metribuzin H -0.3565 0.8927 1.8 0 -2.8858 -2.0952 0.6402 1.6000 1.2304 2.2500 -0.7467 2.0000 3.2613 

metribuzin H -0.3565 0.8927 5.6 0 -3.3929 -2.6022 0.1332 1.6000 1.2304 2.2500 -0.7467 2.0000 3.2613 

metribuzin H -0.3565 0.8927 18 0.73 -2.8858 -2.0952 0.6402 1.6000 1.2304 2.2500 -0.7467 2.0000 3.2613 

Brock et al., 
(2004) 
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metribuzin H -0.3565 0.8927 56 1 -2.3929 -1.6022 1.1332 1.6000 1.2304 2.2500 -0.7467 2.0000 3.2613 

metribuzin H -0.3565 0.8927 180 1 -1.8858 -1.0952 1.6402 1.6000 1.2304 2.2500 -0.7467 2.0000 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 10 0 -4.1761 -2.9682 0.5854 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 100 0 -3.1761 -1.9682 1.5854 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 500 0 -2.4771 -1.2693 2.2843 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H 1.9469 0.1303 1000 0 -2.1761 -0.9682 2.5854 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

Thompson et al., 
(1993) 

metsulfuron 
methyl 

H -1.0862 1.1166 1 0 -5.1761 -3.9682 -0.4146 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H -1.0862 1.1166 5 0 -4.4771 -3.2693 0.2843 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

metsulfuron 
methyl 

H -1.0862 1.1166 20 1 -3.8751 -2.6672 0.8864 0.0180 0.8129 2.0478 3.0394 1.6392 3.2613 

Wendt-Rasch et 
al., (2003) 

permethrin I 0.4771 0.6561 0.75 0.25 -0.4349 1.7252 -0.8989 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 Yasuno et al., 
(1998) 
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APPENDIX F:  Data used to model Algal Species responses 
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permethrin I 0.4771 0.6561 1.5 0.25 -0.1338 2.0263 -0.5979 6.1000 4.6114 1.4771 -0.9031 1.5125 3.2613 

atrazine H   20 0 -3.0496 -1.9297 0.2215 2.5000 1.9390 1.6435 2.5250 2.2782 2.3010 

atrazine H   500 1 -1.6517 -0.5317 1.6195 2.5000 1.9390 1.6435 2.5250 2.2782 2.3010 

DeNoyelles et al., 
(1982) 

esfenvalerate I 1.67024
6 

 0.03
5 

0.25 -1.0445 0.6661 -1.1996 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I 1.67024
6 

 0.07
7 

0.25 -0.7021 1.0085 -0.8572 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

esfenvalerate I 1.67024
6 

 0.13
2 

0.25 -0.4680 1.2426 -0.6231 6.2200 4.0000 1.8692 1.0000 1.7182 3.2613 

Schroll and 
Jespersen (1998) 

KEY 

Type – type of pesticides  
H  - herbicide 
I – insecticide 
F  - fish toxicant / fungicide 

Fish – the presence of fish within the systems 
F - fish was present 
NF – no fish was present  

Structural Properties of the System 
LTSA/V R – log-transformed total surface area to volume ratio 
L Volume - log-transformed volume (m3) 

Toxicity Units 
LTU Daphnia – log-transformed toxic unit based on geometric 
means for Daphnia species 
L TU HC5 – C – log-transformed toxic unit based on hazard 
concentration for 5% of crustacea species 

Fate Properties of the Pesticide  
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APPENDIX F:  Data used to model Algal Species responses 
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Physico-Chemical Pesticide Properties  
log Koc – log-transformed organic carbon absorption coefficient 
log kow – log-transformed octanol-water coefficient 

LAAB – log-transformed aerobic aquatic biotransformation (days) 
L ASB - log-transformed aerobic soil biotransformation (days) 
L HHL - log-transformed hydrolysis half-life (days) 
L WPHL - log-transformed water photolysis half-life (days) 
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APPENDIX G:  Types of Pesticides in Database 

• Insecticides: 25 

• Herbicides: 20 (2 types of 2,4 D) 

• Fish Toxicant: 1 

• Fungicide: 1 

• Herbicides 

Pesticide Chemical 
Group 

Code Mode of Action Code 

2,4 D (DMA & BEE) Phenoxy PX Synthetic auxin S A 

Alachlor Amide A Inhibition of protein synthesis and root elongation P S 

Atrazine Triazine T Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Dichlobenil Nitrile N Inhibition of cell wall (cellulose) biosynthesis C B 

Diquat Quaternary 
ammonium 

Q During photosynthesis, superoxide is generated, which damages cell 
membranes and cytoplasm 

S G 

Glyphosate Op OP Inhibits 5-enolpyruvylshikimate-3-phosphate synthase (epsps), an 
enzyme of the aromatic acid biosynthetic pathway 

EPSPS 

Glufosinate- ammonium Op OP Glutamine synthetase inhibitor G S 
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Pesticide Chemical 
Group 

Code Mode of Action Code 

Hexazinone Triazinone TN Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Isoproturon Urea U Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Linuron Urea U Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Metamitron Triazinone TN Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Methabenzthiazuron Urea U Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Metsulfuron methyl Urea U Through inhibition of the enzyme acetolactate synthase A S 

Metribuzin Triazinone TN Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Nicosulfuron Urea U Through inhibition of the enzyme acetolactate synthase A S 

Simazine Triazine T Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Tebuthiuron Urea U Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Terbutryn Triazine T Photosynthetic electron transport inhibitor at the photosystem II 
receptor site. 

P 

Triclopyr Pyridine PD Synthetic auxin S A 
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Insecticides  
Pesticide Chemical Group Code Mode of Action Code 

Aminocarb Carbamate C Cholinesterase inhibitor C 

Azinphosmethyl Organothiophosphate OP Cholinesterase inhibitor C 

Bendiocarb Carbamate C Cholinesterase inhibitor C 

Carbaryl Carbamate C Cholinesterase inhibitor C 

Carbofuran Carbamate C Oxidative phosphorylation uncoupler, leading to membrane 
disruption 

O 

Chlorpyrifos Organothiophosphate OP Cholinesterase inhibitor C 

Cyfluthrin Pyrethroid P Sodium channel disruption of neurons S 

Cypermethrin Pyrethroid P Sodium channel disruption of neurons S 

Deltamethrin Pyrethroid P Sodium channel disruption of neurons S 

Diflubenzuron Insect Growth Regulator IGR Chitin synthesis inhibitor Ch 

Esfenvalerate Pyrethroid P Sodium channel agonist S 

Fenitrothion Organothiophosphate OP Cholinesterase inhibitor C 

Fenthion Organothiophosphate OP Cholinesterase inhibitor C 

Fenvalerate Pyrethroid P Sodium channel disruption of neurons S 

Lambda-cyhalothrin Pyrethroid P Sodium channel disruption of neurons S 

Lindane Organochlorine OC Antagonist of the GABA receptor-chloride channel complex A 

Methoxychlor Organochlorine  OC  U 
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Pesticide Chemical Group Code Mode of Action Code 

Methyl parathion Organothiophosphate OP Cholinesterase inhibitor C 

Permethrin Pyrethroid P Sodium channel disruption of neurons S 

Phorate Organothiophosphate OP Cholinesterase inhibitor C 

Pyridaben Pyridazinone PZ Inhibitor of mitochondrial electron transport at complex M 

Tebufenozide Moulting hormone agonist IGR Moulting hormone agonist H 

Temephos Organothiophosphate OP Cholinesterase inhibitor C 

Triazamate Carbamoyl triazole CT Cholinesterase inhibitor C 

Trichlorphon Phosphonate PP Cholinesterase inhibitor C 

 

Fungicide and Fish Toxicant  
Pesticide Chemical Group Code Mode of Action Code 

Carbendazim Carbamate C Inhibits beta-tubulin synthesis BT 

Rotenone Botanical B Respiratory inhibitor acting by inhibiting electron transport at NADH-
ubiquinone oxidoreductase (complex I). 

R 
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APPENDIX H:  Study Sites, Application Months and Application Methods used in Ecosystem Studies  

Country No of 
Studies 

Application Month No of 
Studies 

Application Type No of 
Studies 

Canada 27 January 1 Surface application 
   - spray 
   - spray drift 

54 

Denmark 3 February 1  27 
France 4 April 4  10 
Germany 5 May 13 Sub-surface application 12 
Japan  3 June 22   
Senegal 1 July 16 Not Stated 18 
Sweden 1 August 6   
The Netherlands 5 September 3   
UK 6 October 7   
USA 22 December 1   
Not Stated 8 Not Stated 17   
Total 84   Total 84 
* some studies had multiple experiments with differing application dates.  
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APPENDIX I:  Scatterplot of Crustacea count ratio of effect and L TU HC5-C 

Scatterplot (sr li in Crustacea system effects ratio.stw 50v*109c)
count ratio change = 0.4331+0.1492*x; 0.95 Pred.Int.
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 L TU HC5 - C:count ratio change:  r2 = 0.4619;  r = 0.6796, p = 0.0000;  y = 0.433141507 + 0.149157282 

L TU HC5 – C – log-transformed toxic unit based on hazard concentration for 5% of crustacea species 
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APPENDIX J:  Scatterplot of Crustacea count ratio of effect and L TU Daphnia 

Scatterplot (sr li in Crustacea system effects ratio.stw 50v*109c)
count ratio change = 0.6722+0.1393*x; 0.95 Pred.Int.
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 L TU Daphnia spp GM L/EC50:count ratio change:  r2 = 0.4307;  r = 0.6562, p = 0.0000;  y = 0.67222033 
 

LTU Daphnia – log-transformed toxic unit based on geometric mean for Daphnia species 
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APPENDIX K:  List of Acronyms 

AAB Aerobic aquatic biotransformation half-life  

AFs Application Factors 

AIC Akaike’s Information Criterion 

AICc Akaike’s Information Criterion correction estimates for small samples  

ASB Aerobic soil biotransformation half-life  

EC50 Effect Concentrations for 50% of the test population 

EU European Union 

EXTOXNET EXtention TOXicology NETwork 

HC Hazard Concentration 

HC5 Hazard Concentration for five percent of the species 

HC5- A Hazard concentrations for 5% of the algal species 

HC5-C Hazard concentration for 5% of crustacean species 

HHL Hydrolysis half-life 

Koc Organic carbon absorption coefficient 

Kow Octanol-water partition coefficient 

L AAB Log-transformed aerobic aquatic biotransformation half-life 

L ASB Log-transformed aerobic soil biotransformation half-life  

LC50 Lethal Concentrations for 50% of the test population 

L(E)C50 Lethal or Effect Concentration for 50% of the test population 

L HHL Log-transformed hydrolysis half-life 

L TU Daphnia Log-transformed TUs based on the geometric means of Daphnia species 

L TU HC5-A Log-transformed TUs based on HC5-A 

L TU HC5-C Log-transformed TUs based on HC5-C 
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L WPHL Log-transformed water photolysis half-life 

L volume Log-transformed volume  

L TSA/V R Log-transformed total surface area to volume ratio 

Log koc log-transformed organic carbon absorption coefficient 

log Kow Log-transformed octanol-water partition coefficient 

MPC The Maximum Permissible Concentration 

NOEC No Observable Effect Concentration  

OECD Organisation for Economic Co-operation and Development  

PAN Pesticide Action Network 

PMRA  Pest Management Regulatory Agency – Government of Canada 

PNEC  Predicted No Effect Concentration 

R2  coefficient of determination 

SSDs  Species Sensitivity Distributions 

TSA/V R  Total surface area to volume ratio 

TU  Toxicity Units 

UP  Uniform Principles 

USDA NRCS  

USEPA  United States Environmental Protection Agency 

WPHL  water photolysis half-life 


